-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoctet_invert_counterfactual.py
409 lines (332 loc) · 17 KB
/
octet_invert_counterfactual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import os
import sys
import random
import ipdb
import torch
import numpy as np
import torchvision.transforms as T
import torchvision.transforms.functional as F
from PIL import Image
from tqdm import tqdm
from torchvision.utils import make_grid
from torch.optim.lr_scheduler import StepLR
import lpips
here_dir = '.'
sys.path.append(os.path.join(here_dir, 'src'))
from utils import get_tensor_value, opt_var
from data.utils import CustomImageDataset
from models import DecisionDensenetModel, load_model
from models.networks import StyleGANDiscriminator
class Config:
blobgan_weights = 'checkpoints/blobgan_256x512.ckpt'
encoder_weights = 'checkpoints/encoder_256x512.pt'
decision_model_weights = 'checkpoints/decision_densenet.tar'
device = torch.device("cuda:0")
torch.cuda.set_device(device)
lambda_inv_lpips = 1
lambda_inv_l2 = 0.1
lambda_inv_decision_fm = 0.1
lambda_inv_latent_prox = 0.1
real_images = True
inversion_only = False
load_inversion = False
learning_rate_cf = 0.08
#output_dir = 'experiments/reconstruction_only_1_01_01_01'
#lambda_inv_lpips = 1
#lambda_inv_l2 = 0.1
#lambda_inv_decision_fm = 0.1
#lambda_inv_latent_prox = 0.1
#output_dir = 'experiments/reconstruction_only_1_01_00_01'
#lambda_inv_lpips = 1
#lambda_inv_l2 = 0.1
#lambda_inv_decision_fm = 0.
#lambda_inv_latent_prox = 0.1
#output_dir = 'experiments/reconstruction_only_1_01_01_00'
#lambda_inv_lpips = 1
#lambda_inv_l2 = 0.1
#lambda_inv_decision_fm = 0.1
#lambda_inv_latent_prox = 0.
#output_dir = 'experiments/reconstruction_only_1_00_01_01'
#lambda_inv_lpips = 1
#lambda_inv_l2 = 0.
#lambda_inv_decision_fm = 0.1
#lambda_inv_latent_prox = 0.1
#output_dir = 'experiments/reconstruction_only_0_01_01_01'
#lambda_inv_lpips = 0
#lambda_inv_l2 = 0.1
#lambda_inv_decision_fm = 0.1
#lambda_inv_latent_prox = 0.1
#dataset_path = '/datasets_local/BDD/bdd100k/seg/images/val' # Val set
#real_images = True # Means that real images are used, otherwise images are generated from blobGan latent space
#inversion_only = False # Only inver images
#load_inversion = True
#output_dir = 'experiments/cf_inversed_1_01_01_01_lambda_prox_1_lr_008'
#inversions_path = 'experiments/reconstruction_only_1_01_01_01/all_inversions.pt' # Default None
#load_inversion = True
#output_dir = 'experiments/cf_inversed_1_01_01_00_lambda_prox_1_lr_008'
#inversions_path = 'experiments/reconstruction_only_1_01_01_00/all_inversions.pt' # Default None
## Quali real val image
#dataset_path = '/datasets_local/BDD/bdd100k/seg/images/val' # Val set
#load_inversion = True
#output_dir = 'experiments/quali_cf_lr_0.19'
#inversions_path = 'shared_files/validation_rec_reproducible.pt' # Default None
## Quali real train image
#dataset_path = '/datasets_local/BDD/bdd100k/seg/images/val' # Val set
#load_inversion = False
#output_dir = 'experiments/quali_cf_val_lr_0.08'
### Quali generated images
#real_images = False
#output_dir = 'experiments/quali_generated_008_lambda_0'
#learning_rate_cf = 0.08
#lambda_prox_cf = 0.
#real_images = False # Means that real images are used, otherwise images are generated from blobGan latent space
#output_dir = 'experiments/generated_style_struct_lambda0_100iterations_lr_019'
#dataset_path = '/datasets_local/BDD/bdd100k/seg/images/val' # Val set
#dataset_path = '/datasets_local/BDD/bdd100k/seg/images/train' # Train set
bs = 3 # Fits on 2080 with 12GB
#bs = 6 # Fits on A100 with 20GB
#bs = 16 # Fits on A100 with 40GB
num_imgs=16*16
class OCTET():
def __init__(self, opt: Config):
self.opt = opt
os.makedirs(opt.output_dir, exist_ok=True)
# Load blobGan backbone
self.model = load_model(opt.blobgan_weights, opt.device)
self.model.render_kwargs['ret_layout'] = False
self.model.render_kwargs['norm_img'] = False
self.model.get_mean_latent()
# Load image encoder, its architecture is a styleGANDiscriminator
self.aspect_ratio = self.model.generator_ema.aspect_ratio
self.resolution = self.model.resolution
self.encoder = StyleGANDiscriminator(size = self.resolution,
discriminate_stddev = False,
d_out=self.model.layout_net_ema.mlp[-1].weight.shape[1],
aspect_ratio = self.aspect_ratio).to(opt.device)
self.encoder.load_state_dict(torch.load(opt.encoder_weights)['model'])
self.encoder.eval()
# Load the decision model to be explained
self.decision_model = DecisionDensenetModel(num_classes=4)
self.decision_model.load_state_dict(torch.load(opt.decision_model_weights)['model_state_dict'])
self.decision_model.eval().to(opt.device)
# Create loss LPIPS
self.loss_fn_vgg = lpips.LPIPS(net='vgg').to(opt.device)
# Create dataloader if real images are used
if opt.real_images:
if not(opt.load_inversion):
self.transform = self.get_transform()
self.get_dataloader(opt.dataset_path, opt.bs)
self.num_imgs = len(self.dataset)
else:
self.loaded_inversions = torch.load(opt.inversions_path)
self.num_imgs = len(self.loaded_inversions)
else:
self.num_imgs = opt.num_imgs
def get_transform(self):
stats = {'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5)}
if self.aspect_ratio != 1 and type(self.resolution) == int:
self.resolution = (self.resolution, int(self.aspect_ratio*self.resolution))
transform = T.Compose([
t for t in [
T.Resize(self.resolution, T.InterpolationMode.LANCZOS),
T.CenterCrop(self.resolution),
T.ToTensor(),
T.Normalize(stats['mean'], stats['std'], inplace=True),
]
])
return transform
def get_dataloader(self, path, batch_size, shuffle=False):
self.dataset = CustomImageDataset(path, self.transform)
self.dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=batch_size, shuffle=shuffle)
def lpips_loss(self, x1,x2):
return self.loss_fn_vgg(x1, x2).squeeze()
def generate_layout_feat_(self, z, truncate=None, mlp_idx=None):
num_features = random.randint(self.model.n_features_min, self.model.n_features_max)
if truncate is not None:
mlp_idx = -1
z = self.model.layout_net_ema.mlp[:mlp_idx](z)
z = (self.model.mean_latent * truncate) + (z * (1 - truncate))
return self.model.layout_net_ema(z, num_features, mlp_idx)
def save_results(self, metadata, images, idx):
images = {k: v.float().cpu() for k, v in images.items()}
images = torch.cat([v for v in images.values()], 0)
image_grid = make_grid(
images, normalize=True, value_range=(-1, 1), nrow=self.opt.bs
)
image_grid = F.to_pil_image(image_grid)
image_grid = image_grid.save(f"{self.opt.output_dir}/snapshot_{idx}.jpg")
torch.save(metadata, f'{self.opt.output_dir}/metadata_{idx}.pt')
def invert_and_cf(self):
opt = self.opt
num_batches = self.num_imgs // opt.bs
num_batches += int(self.num_imgs % opt.bs > 0)
if opt.real_images and not(opt.load_inversion):
iterator = iter(self.dataloader)
# Iterate over image batches
for idx in range(num_batches):
print(idx)
metadata={}
if opt.real_images:
if not(opt.load_inversion):
batch = next(iterator)
# loading target image
metadata['image_names'] = batch[1]
target = batch[0].to(opt.device)
# Step 1: Encoding image into intermediate latent space (1024)
latent_enc = self.encoder(target).detach()
# Transform this intermediate latent into blob params & features
blob_enc = self.generate_layout_feat_(latent_enc, mlp_idx=-1)
# Step 2: Refine blob parameters by optimizing directly on the blob_enc parameters
blob_optim, images, lpips_ = self.inv_optim(target, blob_enc)
metadata['blob_optim'] = blob_optim
metadata['lpips'] = lpips_
else:
metadata['image_names'] = list(self.loaded_inversions.keys())[opt.bs*idx:opt.bs*(idx+1)]
aux = list(self.loaded_inversions.values())[opt.bs*idx:opt.bs*(idx+1)]
#metadata['blob_optim'] = {k: torch.cat([aux[i][k] for i in range(opt.bs)]) for k in aux[0].keys()}
metadata['blob_optim'] = {k: torch.cat([aux[i][k].to(opt.device) for i in range(len(metadata["image_names"]))]) for k in aux[0].keys()}
target = []
#for i in range(opt.bs):
for i in range(len(metadata["image_names"])):
img_path = os.path.join(opt.dataset_path, metadata['image_names'][i])
image = Image.open(img_path)
transform = self.get_transform()
target.append(transform(image)[None,...])
target = torch.cat(target)
reconstr_images = self.model.gen(layout=metadata['blob_optim'], **self.model.render_kwargs)
images = {
'real': target,
'reconstr': reconstr_images,
}
else:
z = torch.randn((opt.bs, 512)).to(opt.device)
blob_optim = self.generate_layout_feat_(z, truncate=0.3)
metadata = {}
with torch.no_grad():
imgs = self.model.gen(layout=blob_optim, **self.model.render_kwargs)
images = {'query': imgs} #bs,1,3,256,256
target = imgs
metadata['blob_optim'] = blob_optim
# Optimizing blob parameters for cf
if not opt.inversion_only:
metadata, images = self.cf_optim(metadata, images, target.to(opt.device))
self.save_results(metadata, images, idx)
def inv_optim(self, im_tar, blob_enc):
opt = self.opt
# Script to optimize the blob parameters to better match the original query image
## hyper parameters
learning_rate = 0.02
n_iters = 400
target_features = ['xs', 'ys', 'sizes', 'covs', 'features', 'spatial_style']
lr = {'xs':learning_rate, 'ys':learning_rate, 'sizes':learning_rate*2, 'covs':learning_rate} #/5 /5 /1 /10
with torch.no_grad():
img_init = self.model.gen(layout=blob_enc, **self.model.render_kwargs)
target_decision_feat = self.decision_model.feat_extract(im_tar)
blob_optim = opt_var(blob_enc, target_params=target_features)
params = []
for key, val in blob_optim.items():
if key in target_features:
params.append({'params':val, 'lr':lr.get(key, learning_rate)})
optimizer = torch.optim.Adam(params, lr=learning_rate)
scheduler = StepLR(optimizer, step_size=100, gamma=0.5)
viz_tar = im_tar.clone().detach()
viz_init = img_init.clone().detach()
pbar = tqdm(range(1, n_iters + 1), leave=True)
prox_criterion = torch.nn.MSELoss()
# Main optimization loop
for step in pbar:
img = self.model.gen(layout=blob_optim, **self.model.render_kwargs)
loss_l2 = torch.mean((img - im_tar) ** 2, dim=(1, 2, 3))
log_message = f'loss_l2: {get_tensor_value(loss_l2).mean():.4f}'
loss_pips = self.lpips_loss(img, im_tar)
log_message += f', LPIPS: {get_tensor_value(loss_pips).mean():.4f}'
decision_feat = self.decision_model.feat_extract(img)
decision_loss = torch.mean((decision_feat - target_decision_feat) ** 2)
log_message += f', Decision: {get_tensor_value(decision_loss).mean():.4f}'
loss_prox = 0
for (k_opt, v_opt), (k_orig, v_orig) in zip(blob_optim.items(), blob_enc.items()):
loss_prox += prox_criterion(v_opt, v_orig)
log_message += f', L_prox: {get_tensor_value(loss_prox).mean():.4f}'
loss = opt.lambda_inv_lpips * loss_pips + opt.lambda_inv_l2 * loss_l2 + opt.lambda_inv_decision_fm * decision_loss + opt.lambda_inv_latent_prox* loss_prox
pbar.set_description_str(log_message)
loss = loss.sum()
# Do optimization.
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
viz_img = img.clone().detach()
imgs = {
'real': viz_tar,
'enc': viz_init,
'reconstr': viz_img,
}
return opt_var(blob_optim), imgs, loss_pips.detach().cpu()
def cf_optim(self, metadata, images, im_tar):
# Actual counterfactual optimization
# Hyperparameters
target_attributes = [0, 1, 2, 3]
target_features = ['spatial_style']
learning_rate = self.opt.learning_rate_cf
#learning_rate = 0.19
n_iters = 100
lr = {'xs':learning_rate/8, 'ys':learning_rate/8, 'sizes':learning_rate,
'covs':learning_rate/8, 'features':learning_rate/8, 'spatial_style':learning_rate/8} #/5 /5 /1 /10
#λ_prox = 0 #1 5 0 0.1 10
#λ_prox = 0.1
#λ_prox = 0.
λ_prox = self.opt.lambda_prox_cf
λs = {'spatial_style': 1}
criterion = torch.nn.L1Loss()
layout_metadata_orig = metadata['blob_optim']
scale_features = torch.linalg.norm(layout_metadata_orig['features'], dim=-1, keepdim=True)
scale_spatial_style = torch.linalg.norm(layout_metadata_orig['spatial_style'], dim=-1, keepdim=True)
for target_attribute in target_attributes:
with torch.no_grad():
img_orig = self.model.gen(layout=layout_metadata_orig, **self.model.render_kwargs)
initial_scores = self.decision_model(img_orig)
metadata['init_scores'] = initial_scores.detach().cpu()
target = (initial_scores[:, target_attribute] < 0.5).double()
layout_metadat_opt = opt_var(layout_metadata_orig, target_params=target_features)
# defining params and lr
params = []
for key, val in layout_metadat_opt.items():
if key in target_features:
params.append({'params':val, 'lr':lr[key]})
optimizer = torch.optim.Adam(params, lr=learning_rate)
pbar = tqdm(range(1, n_iters + 1), leave=True)#, desc=f'Image {i}')
for step in pbar:
log_message = f'Att {target_attribute} || '
norm_features = torch.linalg.norm(layout_metadat_opt['features'], dim=-1, keepdim=True).detach()
norm_spatial_style = torch.linalg.norm(layout_metadat_opt['spatial_style'], dim=-1, keepdim=True).detach()
layout_metadat_opt_scaled = {}
layout_metadat_opt_scaled['features'] = scale_features * layout_metadat_opt['features'] / norm_features
layout_metadat_opt_scaled['spatial_style'] = scale_spatial_style * layout_metadat_opt['spatial_style'] / norm_spatial_style
layout_metadat_opt_scaled = {**layout_metadat_opt_scaled, **layout_metadat_opt}
img = self.model.gen(layout=layout_metadat_opt, **self.model.render_kwargs)
counterfactual_probas = self.decision_model(img)
# Decision loss
flip_decision_loss = - (1 - target) * torch.log(1 - counterfactual_probas[:, target_attribute]) \
- target * torch.log(counterfactual_probas[:, target_attribute])
log_message += f'L_decision: {get_tensor_value(flip_decision_loss).mean():.4f}'
loss_prox = 0
for (k_opt, v_opt), (k_orig, v_orig) in zip(layout_metadat_opt.items(), layout_metadata_orig.items()):
λ = λs.get(k_opt, 0)
loss_prox += λ * criterion(v_opt, v_orig)
log_message += f', L_prox: {get_tensor_value(loss_prox).mean():.4f}'
pbar.set_description_str(log_message)
loss = (flip_decision_loss + λ_prox * loss_prox).sum()
optimizer.zero_grad()
loss.backward()
optimizer.step(lambda: loss)
metadata[f'att_{target_attribute}'] = {
'final_scores':counterfactual_probas.detach().cpu(),
'blob_cf': {k: v.detach().cpu() for k, v in layout_metadat_opt.items()},
'lpips': self.lpips_loss(img, im_tar).detach().cpu()
}
images[f'CF_{target_attribute}'] = img
return metadata, images
if __name__ == "__main__":
opt = Config()
octet = OCTET(opt)
octet.invert_and_cf()