-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_single_back.py
212 lines (165 loc) · 9.76 KB
/
train_single_back.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#Training with 1 Backbone but source and target
from torchsparse import SparseTensor
from config import ex
from general_imports import *
from utils.lcp import count_parameters, dict_to_device, get_dataset
@ex.automain
def main(_config, _run):
experiment_name = _run.experiment_info["name"]
# default `log_dir` is "runs" - we'll be more specific here
writer = SummaryWriter('runs/{}'.format(experiment_name))
# convert config to dict
config = eval(str(_config))
# define the logging
logging.getLogger().setLevel(config["logging"])
# device
device = torch.device(config['device'])
if config["device"] == "cuda":
torch.backends.cudnn.benchmark = True
# get the savedir
savedir_root = get_savedir_root(config, experiment_name)
# create the network
disable_log = not config["interactive_log"]
N_LABELS = 2 #For occupancy
net, network_function = construct_network(config, logging)
net.to(device)
logging.info(f"Network -- Number of parameters {count_parameters(net)}")
logging.info("Getting the dataset")
config['test_batch_size'] = 8
source_DatasetClass = get_dataset(eval("datasets."+config["source_dataset_name"]))
target_DatasetClass = get_dataset(eval("datasets."+config["target_dataset_name"]))
dataloader_dict = da_get_dataloader(source_DatasetClass, target_DatasetClass, config, net, network_function)
source_train_loader = dataloader_dict ["source_train_loader"]
source_test_loader = dataloader_dict ["source_test_loader"]
target_train_loader = dataloader_dict ["target_train_loader"]
target_test_loader = dataloader_dict ["target_test_loader"]
# Optimizer
optimizer = optimizer_selection(logging, config, net)
##Learning rate scheduler
scheduler = learning_rate_scheduler_selection(logging, config, optimizer)
# save the config file in the directory to restore the configuration
if ("resume" in config) and (config["resume"]) and (os.path.exists(savedir_root)):
net, optimizer, scheduler, epoch_start, train_iter_count, current_lr, best_checkpoint =\
resume_model(net=net, savedir_root=savedir_root, device=device, optimizer=optimizer, scheduler=scheduler, source_train_loader=source_train_loader)
if best_checkpoint is None:
best_ckpt_mioU_target = 0.0
best_ckpt_epoch = 0
else:
best_ckpt_mioU_target = best_checkpoint["best_mIoU"]
best_ckpt_epoch = best_checkpoint["epoch"]
logging.info(f"Best ckpt mIoU is set to {best_ckpt_mioU_target}, at epoch {best_ckpt_epoch}")
else:
#IF the training starts from new
if os.path.exists(savedir_root):
shutil.rmtree(savedir_root)
os.makedirs(savedir_root, exist_ok=True)
save_config_file(eval(str(config)), os.path.join(savedir_root, "config.yaml"))
epoch_start = 0
train_iter_count = 0
best_ckpt_mioU_target = 0.0
best_ckpt_epoch = 0
# create the loss layer
loss_layer = torch.nn.BCEWithLogitsLoss()
weights_ss = torch.ones(config["nb_classes"])
list_ignore_classes = ignore_selection(config["ignore_idx"])
for idx_ignore_class in list_ignore_classes:
weights_ss[idx_ignore_class] = 0
logging.info(f"Ignored classes {list_ignore_classes}")
logging.info(f"Weights of the different classes {weights_ss}")
weights_ss= weights_ss.to(device)
ce_loss_layer = torch.nn.CrossEntropyLoss(weight = weights_ss)
epoch = epoch_start
max_iteration_per_epoch = max(len(source_train_loader),0)
train_iter_src = enumerate(source_train_loader)
train_iter_trg = enumerate(target_train_loader)
while True:
net.train()
if train_iter_count >= config["training_iter_nbr"]:
break
#Metrics for SOURCE
metrics_holder_source = metrics_holder(N_LABELS=N_LABELS, config=config, target_flag=False)
#Metrics for TARGET
metrics_holder_target = metrics_holder(N_LABELS=N_LABELS, config=config, target_flag=True)
start_iteration = 0
t = tqdm(range(start_iteration, max_iteration_per_epoch),desc="Epoch " + str(epoch), ncols=200, disable=disable_log,)
for _ in t:
# Load source and target data
try:
_, source_data = train_iter_src.__next__()
except:
train_iter_src = enumerate(source_train_loader)
_, source_data = train_iter_src.__next__()
try:
_, target_data = train_iter_trg.__next__()
except:
train_iter_trg = enumerate(target_train_loader)
_, target_data = train_iter_trg.__next__()
source_data = dict_to_device(source_data, device)
target_data = dict_to_device(target_data, device)
current_lr = optimizer.param_groups[0]["lr"]
writer.add_scalar(f"training.lr", current_lr, train_iter_count)
#######################################################################################
# Training on source #
# #####################################################################################
optimizer.zero_grad()
output_data, output_seg = net.forward_pretraining(source_data)
#Semantic Segmentation loss
loss_seg = ce_loss_layer(output_seg, source_data["y"][:,None])
outputs = output_data["predictions"].squeeze(-1)
occupancies = output_data["occupancies"].float()
#Reconstruction loss
recons_loss = config["weight_rec_src"]*loss_layer(outputs, occupancies)
writer.add_scalar(f"training.src.recons_loss",recons_loss, train_iter_count)
loss_seg = config["weight_ss_src"]*loss_seg
writer.add_scalar(f"training.src.seg_loss", loss_seg, train_iter_count)
loss = recons_loss + loss_seg
writer.add_scalar(f"training.src.loss",loss, train_iter_count)
loss.backward()
optimizer.step()
metrics = calculation_metrics(metrics_holder_source, outputs, occupancies, loss_seg, loss,\
recons_loss, output_seg=output_seg, source_data=source_data, ignore_list=list_ignore_classes, output_data=output_data)
del source_data
del output_seg
del output_data
del loss
torch.cuda.empty_cache()
#######################################################################################
# Training on target #
# #####################################################################################
#Training on the same backbone as source (but only reconstruction loss)
optimizer.zero_grad()
output_data, output_seg_target = net.forward_pretraining(target_data)
outputs = output_data["predictions"].squeeze(-1)
occupancies = output_data["occupancies"].float()
recons_loss = loss_layer(outputs, occupancies)
loss = config["weight_rec_trg"] * recons_loss
writer.add_scalar(f"training.trg.recons_loss",loss, train_iter_count)
loss.backward()
optimizer.step()
scheduler.step()
metrics_target = calculation_metrics(metrics_holder_target, outputs, occupancies, None, loss, loss,\
output_seg=output_seg_target, source_data=target_data, ignore_list=list_ignore_classes)
description = f"Epoch {epoch} | SOURCE: Rec-IoU {metrics['train_iou']*100:.2f} | Seg-IoU {metrics['train_seg_head_miou']*100:.2f} ||TARGET: Rec-IoU {metrics_target['train_iou']*100:.2f} || LR: {current_lr:.3e}"
t.set_description_str(wblue(description))
train_iter_count += 1
if train_iter_count >= config["training_iter_nbr"]:
break
del target_data
del output_seg_target
del output_data
del loss
torch.cuda.empty_cache()
######################################
#Save the current weights, optimizer and scheduler
torch.save({"epoch": epoch + 1,"state_dict": net.state_dict(),"optimizer": optimizer.state_dict(),"scheduler":scheduler.state_dict()
},os.path.join(savedir_root, "checkpoint.pth"),)
data_saver={"metrics":metrics, "metrics_target":metrics_target, "train_iter_count":train_iter_count,"_run":_run,
"writer":writer, "epoch":epoch,"net":net, "source_test_loader":source_test_loader, "target_test_loader":target_test_loader,
"N_LABELS":N_LABELS, "disable_log":disable_log, "disable_log":disable_log, "ce_loss_layer":ce_loss_layer,"loss_layer":loss_layer,
"list_ignore_classes":list_ignore_classes, "list_ignore_classes":list_ignore_classes, "device":device, "optimizer":optimizer,
"scheduler":scheduler, "savedir_root":savedir_root, "best_ckpt_mioU_target":best_ckpt_mioU_target, "best_ckpt_epoch":best_ckpt_epoch}
best_ckpt_mioU_target, best_ckpt_epoch = save_val_model(config, data_saver)
epoch += 1
#################### When training is finished ##########################################
torch.save({"epoch": epoch + 1,"state_dict": net.state_dict(),"optimizer": optimizer.state_dict(), "scheduler":scheduler.state_dict()},
os.path.join(savedir_root, "checkpoint.pth"),)