forked from bitsauce/Carla-ppo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcarla_lap_env.py
509 lines (437 loc) · 21.8 KB
/
carla_lap_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import os
import subprocess
import time
import carla
import gym
import pygame
from gym.utils import seeding
from pygame.locals import *
from hud import HUD
from planner import RoadOption, compute_route_waypoints
from wrappers import *
# TODO:
# - Some solution to avoid using the same env instance for training and eval
# - Just found out gym provides ObservationWrapper and RewardWrapper classes.
# Should replace encode_state_fn and reward_fn with these.
class CarlaLapEnv(gym.Env):
"""
This is a simple CARLA environment where the goal is to drive in a lap
around the outskirts of Town07. This environment can be used to compare
different models/reward functions in a realtively predictable environment.
To run an agent in this environment, either start start CARLA beforehand with:
Synchronous: $> ./CarlaUE4.sh Town07 -benchmark -fps=30
Asynchronous: $> ./CarlaUE4.sh Town07
Or, pass argument -start_carla in the command-line.
Note that ${CARLA_ROOT} needs to be set to CARLA's top-level directory
in order for this option to work.
And also remember to set the -fps and -synchronous arguments to match the
command-line arguments of the simulator (not needed with -start_carla.)
Note that you may also need to add the following line to
Unreal/CarlaUE4/Config/DefaultGame.ini to have the map included in the package:
+MapsToCook=(FilePath="/Game/Carla/Maps/Town07")
"""
metadata = {
"render.modes": ["human", "rgb_array", "rgb_array_no_hud", "state_pixels"]
}
def __init__(self, host="127.0.0.1", port=2000,
viewer_res=(1280, 720), obs_res=(1280, 720),
reward_fn=None, encode_state_fn=None,
synchronous=True, fps=30, action_smoothing=0.9,
start_carla=True):
"""
Initializes a gym-like environment that can be used to interact with CARLA.
Connects to a running CARLA enviromment (tested on version 0.9.5) and
spwans a lincoln mkz2017 passenger car with automatic transmission.
This vehicle can be controlled using the step() function,
taking an action that consists of [steering_angle, throttle].
host (string):
IP address of the CARLA host
port (short):
Port used to connect to CARLA
viewer_res (int, int):
Resolution of the spectator camera (placed behind the vehicle by default)
as a (width, height) tuple
obs_res (int, int):
Resolution of the observation camera (placed on the dashboard by default)
as a (width, height) tuple
reward_fn (function):
Custom reward function that is called every step.
If None, no reward function is used.
encode_state_fn (function):
Function that takes the image (of obs_res resolution) from the
observation camera and encodes it to some state vector to returned
by step(). If None, step() returns the full image.
action_smoothing:
Scalar used to smooth the incomming action signal.
1.0 = max smoothing, 0.0 = no smoothing
fps (int):
FPS of the client. If fps <= 0 then use unbounded FPS.
Note: Sensors will have a tick rate of fps when fps > 0,
otherwise they will tick as fast as possible.
synchronous (bool):
If True, run in synchronous mode (read the comment above for more info)
start_carla (bool):
Automatically start CALRA when True. Note that you need to
set the environment variable ${CARLA_ROOT} to point to
the CARLA root directory for this option to work.
"""
# Start CARLA from CARLA_ROOT
self.carla_process = None
if start_carla:
if "CARLA_ROOT" not in os.environ:
raise Exception("${CARLA_ROOT} has not been set!")
dist_dir = os.path.join(os.environ["CARLA_ROOT"], "Dist")
if not os.path.isdir(dist_dir):
raise Exception("Expected to find directory \"Dist\" under ${CARLA_ROOT}!")
sub_dirs = [os.path.join(dist_dir, sub_dir) for sub_dir in os.listdir(dist_dir) if os.path.isdir(os.path.join(dist_dir, sub_dir))]
if len(sub_dirs) == 0:
raise Exception("Could not find a packaged distribution of CALRA! " +
"(try building CARLA with the \"make package\" " +
"command in ${CARLA_ROOT})")
sub_dir = sub_dirs[0]
carla_path = os.path.join(sub_dir, "LinuxNoEditor", "CarlaUE4.sh")
launch_command = [carla_path]
launch_command += ["Town07"]
if synchronous: launch_command += ["-benchmark"]
launch_command += ["-fps=%i" % fps]
print("Running command:")
print(" ".join(launch_command))
self.carla_process = subprocess.Popen(launch_command, stdout=subprocess.PIPE, universal_newlines=True)
print("Waiting for CARLA to initialize")
for line in self.carla_process.stdout:
if "LogCarla: Number Of Vehicles" in line:
break
time.sleep(2)
# Initialize pygame for visualization
pygame.init()
pygame.font.init()
width, height = viewer_res
if obs_res is None:
out_width, out_height = width, height
else:
out_width, out_height = obs_res
self.display = pygame.display.set_mode((width, height), pygame.HWSURFACE | pygame.DOUBLEBUF)
self.clock = pygame.time.Clock()
self.synchronous = synchronous
# Setup gym environment
self.seed()
self.action_space = gym.spaces.Box(np.array([-1, 0]), np.array([1, 1]), dtype=np.float32) # steer, throttle
self.observation_space = gym.spaces.Box(low=0.0, high=1.0, shape=(*obs_res, 3), dtype=np.float32)
self.metadata["video.frames_per_second"] = self.fps = self.average_fps = fps
self.spawn_point = 1
self.action_smoothing = action_smoothing
self.encode_state_fn = (lambda x: x) if not callable(encode_state_fn) else encode_state_fn
self.reward_fn = (lambda x: 0) if not callable(reward_fn) else reward_fn
self.world = None
try:
# Connect to carla
self.client = carla.Client(host, port)
self.client.set_timeout(60.0)
# Create world wrapper
self.world = World(self.client)
if self.synchronous:
settings = self.world.get_settings()
settings.synchronous_mode = True
self.world.apply_settings(settings)
# Get spawn location
#lap_start_wp = self.world.map.get_waypoint(carla.Location(x=-180.0, y=110))
lap_start_wp = self.world.map.get_waypoint(self.world.map.get_spawn_points()[1].location)
spawn_transform = lap_start_wp.transform
spawn_transform.location += carla.Location(z=1.0)
# Create vehicle and attach camera to it
self.vehicle = Vehicle(self.world, spawn_transform,
on_collision_fn=lambda e: self._on_collision(e),
on_invasion_fn=lambda e: self._on_invasion(e))
# Create hud
self.hud = HUD(width, height)
self.hud.set_vehicle(self.vehicle)
self.world.on_tick(self.hud.on_world_tick)
# Create cameras
self.dashcam = Camera(self.world, out_width, out_height,
transform=camera_transforms["dashboard"],
attach_to=self.vehicle, on_recv_image=lambda e: self._set_observation_image(e),
sensor_tick=0.0 if self.synchronous else 1.0/self.fps)
self.camera = Camera(self.world, width, height,
transform=camera_transforms["spectator"],
attach_to=self.vehicle, on_recv_image=lambda e: self._set_viewer_image(e),
sensor_tick=0.0 if self.synchronous else 1.0/self.fps)
except Exception as e:
self.close()
raise e
# Generate waypoints along the lap
self.route_waypoints = compute_route_waypoints(self.world.map, lap_start_wp, lap_start_wp, resolution=1.0,
plan=[RoadOption.STRAIGHT] + [RoadOption.RIGHT] * 2 + [RoadOption.STRAIGHT] * 5)
self.current_waypoint_index = 0
self.checkpoint_waypoint_index = 0
# Reset env to set initial state
self.reset()
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def reset(self, is_training=True):
# Do a soft reset (teleport vehicle)
self.vehicle.control.steer = float(0.0)
self.vehicle.control.throttle = float(0.0)
#self.vehicle.control.brake = float(0.0)
self.vehicle.tick()
if is_training:
# Teleport vehicle to last checkpoint
waypoint, _ = self.route_waypoints[self.checkpoint_waypoint_index % len(self.route_waypoints)]
self.current_waypoint_index = self.checkpoint_waypoint_index
else:
# Teleport vehicle to start of track
waypoint, _ = self.route_waypoints[0]
self.current_waypoint_index = 0
transform = waypoint.transform
transform.location += carla.Location(z=1.0)
self.vehicle.set_transform(transform)
self.vehicle.set_simulate_physics(False) # Reset the car's physics
self.vehicle.set_simulate_physics(True)
# Give 2 seconds to reset
if self.synchronous:
ticks = 0
while ticks < self.fps * 2:
self.world.tick()
try:
self.world.wait_for_tick(seconds=1.0/self.fps + 0.1)
ticks += 1
except:
pass
else:
time.sleep(2.0)
self.terminal_state = False # Set to True when we want to end episode
self.closed = False # Set to True when ESC is pressed
self.extra_info = [] # List of extra info shown on the HUD
self.observation = self.observation_buffer = None # Last received observation
self.viewer_image = self.viewer_image_buffer = None # Last received image to show in the viewer
self.start_t = time.time()
self.step_count = 0
self.is_training = is_training
self.start_waypoint_index = self.current_waypoint_index
# Metrics
self.total_reward = 0.0
self.previous_location = self.vehicle.get_transform().location
self.distance_traveled = 0.0
self.center_lane_deviation = 0.0
self.speed_accum = 0.0
self.laps_completed = 0.0
# DEBUG: Draw path
#self._draw_path(life_time=1000.0, skip=10)
# Return initial observation
return self.step(None)[0]
def close(self):
if self.carla_process:
self.carla_process.terminate()
pygame.quit()
if self.world is not None:
self.world.destroy()
self.closed = True
def render(self, mode="human"):
# Get maneuver name
if self.current_road_maneuver == RoadOption.LANEFOLLOW: maneuver = "Follow Lane"
elif self.current_road_maneuver == RoadOption.LEFT: maneuver = "Left"
elif self.current_road_maneuver == RoadOption.RIGHT: maneuver = "Right"
elif self.current_road_maneuver == RoadOption.STRAIGHT: maneuver = "Straight"
elif self.current_road_maneuver == RoadOption.VOID: maneuver = "VOID"
else: maneuver = "INVALID(%i)" % self.current_road_maneuver
# Add metrics to HUD
self.extra_info.extend([
"Reward: % 19.2f" % self.last_reward,
"",
"Maneuver: % 11s" % maneuver,
"Laps completed: % 7.2f %%" % (self.laps_completed * 100.0),
"Distance traveled: % 7d m" % self.distance_traveled,
"Center deviance: % 7.2f m" % self.distance_from_center,
"Avg center dev: % 7.2f m" % (self.center_lane_deviation / self.step_count),
"Avg speed: % 7.2f km/h" % (3.6 * self.speed_accum / self.step_count)
])
# Blit image from spectator camera
self.display.blit(pygame.surfarray.make_surface(self.viewer_image.swapaxes(0, 1)), (0, 0))
# Superimpose current observation into top-right corner
obs_h, obs_w = self.observation.shape[:2]
view_h, view_w = self.viewer_image.shape[:2]
pos = (view_w - obs_w - 10, 10)
self.display.blit(pygame.surfarray.make_surface(self.observation.swapaxes(0, 1)), pos)
# Render HUD
self.hud.render(self.display, extra_info=self.extra_info)
self.extra_info = [] # Reset extra info list
# Render to screen
pygame.display.flip()
if mode == "rgb_array_no_hud":
return self.viewer_image
elif mode == "rgb_array":
# Turn display surface into rgb_array
return np.array(pygame.surfarray.array3d(self.display), dtype=np.uint8).transpose([1, 0, 2])
elif mode == "state_pixels":
return self.observation
def step(self, action):
if self.closed:
raise Exception("CarlaEnv.step() called after the environment was closed." +
"Check for info[\"closed\"] == True in the learning loop.")
# Asynchronous update logic
if not self.synchronous:
if self.fps <= 0:
# Go as fast as possible
self.clock.tick()
else:
# Sleep to keep a steady fps
self.clock.tick_busy_loop(self.fps)
# Update average fps (for saving recordings)
if action is not None:
self.average_fps = self.average_fps * 0.5 + self.clock.get_fps() * 0.5
# Take action
if action is not None:
steer, throttle = [float(a) for a in action]
#steer, throttle, brake = [float(a) for a in action]
self.vehicle.control.steer = self.vehicle.control.steer * self.action_smoothing + steer * (1.0-self.action_smoothing)
self.vehicle.control.throttle = self.vehicle.control.throttle * self.action_smoothing + throttle * (1.0-self.action_smoothing)
#self.vehicle.control.brake = self.vehicle.control.brake * self.action_smoothing + brake * (1.0-self.action_smoothing)
# Tick game
self.hud.tick(self.world, self.clock)
self.world.tick()
# Synchronous update logic
if self.synchronous:
self.clock.tick()
while True:
try:
self.world.wait_for_tick(seconds=1.0/self.fps + 0.1)
break
except:
# Timeouts happen occasionally for some reason, however, they seem to be fine to ignore
self.world.tick()
# Get most recent observation and viewer image
self.observation = self._get_observation()
self.viewer_image = self._get_viewer_image()
encoded_state = self.encode_state_fn(self)
# Get vehicle transform
transform = self.vehicle.get_transform()
# Keep track of closest waypoint on the route
waypoint_index = self.current_waypoint_index
for _ in range(len(self.route_waypoints)):
# Check if we passed the next waypoint along the route
next_waypoint_index = waypoint_index + 1
wp, _ = self.route_waypoints[next_waypoint_index % len(self.route_waypoints)]
dot = np.dot(vector(wp.transform.get_forward_vector())[:2],
vector(transform.location - wp.transform.location)[:2])
if dot > 0.0: # Did we pass the waypoint?
waypoint_index += 1 # Go to next waypoint
else:
break
self.current_waypoint_index = waypoint_index
# Calculate deviation from center of the lane
self.current_waypoint, self.current_road_maneuver = self.route_waypoints[ self.current_waypoint_index % len(self.route_waypoints)]
self.next_waypoint, self.next_road_maneuver = self.route_waypoints[(self.current_waypoint_index+1) % len(self.route_waypoints)]
self.distance_from_center = distance_to_line(vector(self.current_waypoint.transform.location),
vector(self.next_waypoint.transform.location),
vector(transform.location))
self.center_lane_deviation += self.distance_from_center
# DEBUG: Draw current waypoint
#self.world.debug.draw_point(self.current_waypoint.transform.location, color=carla.Color(0, 255, 0), life_time=1.0)
# Calculate distance traveled
self.distance_traveled += self.previous_location.distance(transform.location)
self.previous_location = transform.location
# Accumulate speed
self.speed_accum += self.vehicle.get_speed()
# Get lap count
self.laps_completed = (self.current_waypoint_index - self.start_waypoint_index) / len(self.route_waypoints)
if self.laps_completed >= 3:
# End after 3 laps
self.terminal_state = True
# Update checkpoint for training
if self.is_training:
checkpoint_frequency = 50 # Checkpoint frequency in meters
self.checkpoint_waypoint_index = (self.current_waypoint_index // checkpoint_frequency) * checkpoint_frequency
# Call external reward fn
self.last_reward = self.reward_fn(self)
self.total_reward += self.last_reward
self.step_count += 1
# Check for ESC press
pygame.event.pump()
if pygame.key.get_pressed()[K_ESCAPE]:
self.close()
self.terminal_state = True
return encoded_state, self.last_reward, self.terminal_state, { "closed": self.closed }
def _draw_path(self, life_time=60.0, skip=0):
"""
Draw a connected path from start of route to end.
Green node = start
Red node = point along path
Blue node = destination
"""
for i in range(0, len(self.route_waypoints)-1, skip+1):
w0 = self.route_waypoints[i][0]
w1 = self.route_waypoints[i+1][0]
self.world.debug.draw_line(
w0.transform.location + carla.Location(z=0.25),
w1.transform.location + carla.Location(z=0.25),
thickness=0.1, color=carla.Color(255, 0, 0),
life_time=life_time, persistent_lines=False)
self.world.debug.draw_point(
w0.transform.location + carla.Location(z=0.25), 0.1,
carla.Color(0, 255, 0) if i == 0 else carla.Color(255, 0, 0),
life_time, False)
self.world.debug.draw_point(
self.route_waypoints[-1][0].transform.location + carla.Location(z=0.25), 0.1,
carla.Color(0, 0, 255),
life_time, False)
def _get_observation(self):
while self.observation_buffer is None:
pass
obs = self.observation_buffer.copy()
self.observation_buffer = None
return obs
def _get_viewer_image(self):
while self.viewer_image_buffer is None:
pass
image = self.viewer_image_buffer.copy()
self.viewer_image_buffer = None
return image
def _on_collision(self, event):
self.hud.notification("Collision with {}".format(get_actor_display_name(event.other_actor)))
def _on_invasion(self, event):
lane_types = set(x.type for x in event.crossed_lane_markings)
text = ["%r" % str(x).split()[-1] for x in lane_types]
self.hud.notification("Crossed line %s" % " and ".join(text))
def _set_observation_image(self, image):
self.observation_buffer = image
def _set_viewer_image(self, image):
self.viewer_image_buffer = image
def reward_fn(env):
early_termination = False
if early_termination:
# If speed is less than 1.0 km/h after 5s, stop
if time.time() - env.start_t > 5.0 and env.vehicle.get_speed() < 1.0 / 3.6:
env.terminal_state = True
# If distance from center > 3, stop
if env.distance_from_center > 3.0:
env.terminal_state = True
fwd = vector(env.vehicle.get_velocity())
wp_fwd = vector(env.current_waypoint.transform.rotation.get_forward_vector())
if np.dot(fwd[:2], wp_fwd[:2]) > 0:
return env.vehicle.get_speed()
return 0
if __name__ == "__main__":
# Example of using CarlaEnv with keyboard controls
env = CarlaLapEnv(obs_res=(160, 80), reward_fn=reward_fn)
action = np.zeros(env.action_space.shape[0])
while True:
env.reset(is_training=True)
while True:
# Process key inputs
pygame.event.pump()
keys = pygame.key.get_pressed()
if keys[K_LEFT] or keys[K_a]:
action[0] = -0.5
elif keys[K_RIGHT] or keys[K_d]:
action[0] = 0.5
else:
action[0] = 0.0
action[0] = np.clip(action[0], -1, 1)
action[1] = 1.0 if keys[K_UP] or keys[K_w] else 0.0
# Take action
obs, _, done, info = env.step(action)
if info["closed"]: # Check if closed
exit(0)
env.render() # Render
if done: break
env.close()