-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSVC_HOG_tuning.py
134 lines (95 loc) · 4.35 KB
/
SVC_HOG_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/python
import sys, os, time
from sklearn.svm import LinearSVC
import numpy as np
from sklearn import datasets
from skimage.feature import hog
from sklearn.utils import shuffle
from sklearn import metrics
import sys
from numpy import genfromtxt
extnsn = "_grey_ftr.csv"
Rsol = 30
print "LinearSVC results for ", extnsn, " with feature and resolution = ", Rsol
train_dir = "CSVs/" + sys.argv[1].rstrip('/')
test_dir = "CSVs/" + sys.argv[2].rstrip('/')
def get_HoG(xs, size_cell, size_block, orientation):
hog_xs = []
for x in xs:
fd = hog(x.reshape((Rsol, Rsol)),
orientations=orientation,
pixels_per_cell=(size_cell, size_cell),
cells_per_block=(size_block, size_block), visualise=False)
hog_xs.append(fd)
return hog_xs
X_train, y_train = [], []
X_test, y_test = [], []
def build_data_sets(size_cell=3, size_block=3, orientation=7):
global X_train, y_train, X_test, y_test
X_train = genfromtxt(train_dir + str(Rsol) + extnsn, delimiter=',', dtype=int)
y_train = genfromtxt(train_dir + str(Rsol) +"_lbl.csv", delimiter=',', dtype=int)
X_test = genfromtxt(test_dir + str(Rsol) + extnsn, delimiter=',', dtype=int)
y_test = genfromtxt(test_dir + str(Rsol) +"_lbl.csv", delimiter=',', dtype=int)
X_train = get_HoG(X_train, size_cell, size_block, orientation)
X_test = get_HoG(X_test, size_cell, size_block, orientation)
def get_svc_results(num_estimators=10):
global X_train, y_train, X_test, y_test
# clf = RandomForestClassifier(n_estimators=num_estimators, n_jobs=2)
clf = LinearSVC()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
mean_accuracy = clf.score(X_test, y_test)
print "Mean accuracy: \t", mean_accuracy
# print "confusion matrix: \n", metrics.confusion_matrix(y_test, y_pred), "\n"
return mean_accuracy
import warnings
import matplotlib.pyplot as plt
if __name__ == "__main__":
start_time = time.time()
with warnings.catch_warnings():
warnings.filterwarnings("ignore",category=DeprecationWarning)
# rang = range(3, 12)
# ans = []
# for i in rang:
# build_data_sets(orientation=i)
# nTrain, nTest = len(y_train), len(y_test)
# print "size of training-set, test-set = ", nTrain, ", ", nTest
# print "HoG Params: orientations = ", i, ", pixels_per_cell = ", 4, ", cells_per_block = ", 3
# print "Dimension of feature vectors = ", len(X_train[0])
# ans.append(get_svc_results(num_estimators=i))
# print "------------------------------------------------------"
# print ans
# Best accuracy came out for orientations = 7
# rang = range(2, 10)
# ans = []
# for i in rang:
# build_data_sets(size_cell=i)
# nTrain, nTest = len(y_train), len(y_test)
# print "size of training-set, test-set = ", nTrain, ", ", nTest
# print "HoG Params: orientations = ", 7, ", pixels_per_cell = ", i, ", cells_per_block = ", 3
# print "Dimension of feature vectors = ", len(X_train[0])
# ans.append(get_svc_results())
# print "------------------------------------------------------"
# print ans
rang = range(2, 10)
ans = []
for i in rang:
build_data_sets(size_block=i)
nTrain, nTest = len(y_train), len(y_test)
print "size of training-set, test-set = ", nTrain, ", ", nTest
print "HoG Params: orientations = ", 7, ", pixels_per_cell = ", 4, ", cells_per_block = ", i
print "Dimension of feature vectors = ", len(X_train[0])
ans.append(get_svc_results())
print "------------------------------------------------------"
print ans
param = "HoG_Block-Size"
plt.plot(rang, ans, linewidth=2.0)
plt.xlabel(param)
plt.ylabel("mean accuracy")
figdir = 'SVC_figs'
if not os.path.exists(figdir):
os.mkdir(figdir)
plt.title("LinearSVC, "+extnsn+", resolution="+str(Rsol))
plt.savefig(figdir+"/" +param +".png")
plt.close()
print "\n~~~~~~~~~~~~~~~~~~ total time taken = %s seconds ~~~~~~~~~~~~~~~~~~\n" %(time.time() - start_time)