-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathextract_filtered_objects.py
executable file
·140 lines (106 loc) · 3.26 KB
/
extract_filtered_objects.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/python
# from get_frames import get_frames
import cv2
import cv2.cv as cv
import sys
import os
import time
start_time = time.time()
# for cutting the some fraction of frames during entry and exit of objects
entry_cut_factor = 100
exit_cut_factor = 100
# factor for filtering repetition
cut_factor_slow = 10
cut_factor_medium = 6
cut_factor_fast = 4
repetition_cut_factor = {
u'Person' : cut_factor_slow,
u'Car' : cut_factor_fast,
u'Bicycle' : cut_factor_medium,
u'Motorcycle' : cut_factor_fast,
u'Autorickshaw' : cut_factor_fast,
u'Rickshaw' : cut_factor_medium,
u'Number-plate' : cut_factor_fast
}
import json
def get_frames(fname, frame_count):
frames = [[] for _ in range(frame_count)]
with open(fname) as json_data:
data = json.load(json_data)
obj_list = data.keys()
obj_frames = {}
for obj_id in obj_list:
obj_frames[obj_id] = {}
for obj_id, item in data.iteritems():
for fno, inst in item["boxes"].iteritems():
inst['label'] = item['label']
if inst['outside'] == 1 or inst['occluded'] == 1:
continue
obj_frames[obj_id][int(fno)] = inst
for obj_id in obj_list:
# filtering frames for each of the objects in loop
frames_list = obj_frames[obj_id].keys()
n = len(frames_list)
#filter the edges (from entry and exit)
frames_list = frames_list[(n/entry_cut_factor) : n-(n/exit_cut_factor)]
#filter for repetition
i = 0
for fno in frames_list:
inst = obj_frames[obj_id][fno]
if i%repetition_cut_factor[inst['label']] == 0:
# Append only the filtered frames
frames[fno].append(inst)
i += 1
return frames
def reject(ht, wd, lbl):
# if lbl == 'Bicycle' && (ht < 75 || wd)
return False
video=sys.argv[1]
vf_name = video.split('.')[0]
cap = cv2.VideoCapture(video)
fcount = cap.get(cv.CV_CAP_PROP_FRAME_COUNT)
fcount = int(fcount)
print "number of frames = ", fcount
print "Parsing JSON data ...",
frames = get_frames('label_data/' +vf_name+'.json', int(fcount))
print "\rParsing JSON Completed"
#print len(frames[0])
#print frames[1][0]
#print frames[0][0][u'occluded']
path = os.getcwd()
path = path + '/filtered_images'
object_id=0
cap = cv2.VideoCapture(video)
fno = 0
cv2.namedWindow("image",flags=cv2.WINDOW_NORMAL)
i = 0
print "Extracting and saving cropped object images ..."
while(cap.isOpened()):
ret, image = cap.read()
if not ret:
break
else:
try:
for obj in frames[fno]:
# if obj[u'occluded'] == 0 and obj[u'outside'] == 0:
# if reject(obj[u'ytl'] - obj[u'ybr'], obj[u'xtl'] - obj[u'xbr'], obj['label']):
# continue
crop_img = image[obj[u'ytl']:obj[u'ybr'], obj[u'xtl']:obj[u'xbr']]
direct = path + '/' + obj['label']
if not os.path.exists(direct):
os.makedirs(direct)
cv2.imwrite(direct+'/'+str(fno)+'_'+str(object_id)+'_'+video+'.jpg', crop_img)
direct = path + '/' + vf_name + '/' + obj['label']
if not os.path.exists(direct):
os.makedirs(direct)
cv2.imwrite(direct+'/'+str(fno)+'_'+str(object_id)+'_'+video+'.jpg', crop_img)
object_id = object_id+1
fno=fno+1
except:
fno+=1
continue;
i += 1
if(i%10):
print "\r", float(i*100)/fcount , "%% Complete",
print "\r", float(i*100)/fcount , " Complete",
print "\n~~~~~~~~~ total time taken = %s seconds ~~~~~~~~~\n" %(time.time() - start_time)