-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmotion_detector.py
executable file
·124 lines (89 loc) · 3.2 KB
/
motion_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
import datetime
import imutils
import time
import cv2
import pickle
from classify_foreground import *
start_time = time.time()
Rsol = 30
if os.path.exists('SVC'+str(Rsol)+'.pickle'):
with open('SVC'+str(Rsol)+'.pickle') as f:
clf = pickle.load(f)
else:
clf = get_clf()
with open('SVC'+str(Rsol)+'.pickle') as f:
pickle.dump(clf, f)
print "model learnt in %s seconds" %(time.time()-start_time)
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the video file")
ap.add_argument("-a", "--min-area", type=int, default=1000, help="minimum area size")
args = vars(ap.parse_args())
camera = cv2.VideoCapture(args["video"])
# initialize the first frame in the video stream
firstFrame = None
# loop over the frames of the video
while True:
# grab the current frame and initialize the Object/NoObject
# text
(grabbed, frame) = camera.read()
text = "NoObject"
# if the frame could not be grabbed, then we have reached the end
# of the video
if not grabbed:
break
# resize the frame, convert it to grayscale, and blur it
frame = imutils.resize(frame, width=700)
gray_orig = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray_orig, (21, 21), 0)
# if the first frame is None, initialize it
if firstFrame is None:
firstFrame = gray
continue
# compute the absolute difference between the current frame and first frame
frameDelta = cv2.absdiff(firstFrame, gray)
#print frameDelta
firstFrame=gray
thresh = cv2.threshold(frameDelta, 1, 255, cv2.THRESH_BINARY)[1]
#print thresh
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh = cv2.dilate(thresh, None, iterations=2)
(cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
#print len(cnts)
color=0
# loop over the contours
for c in cnts:
#color=color+255/len(cnts)
# if the contour is too small, ignore it
if cv2.contourArea(c) < args["min_area"]:
continue
# compute the bounding box for the contour, draw it on the frame,
# and update the text
(x, y, w, h) = cv2.boundingRect(c)
crop_img = gray_orig[y:y+h,x:x+w]
# print np.shape(gray_orig), y, h, x, w, np.shape(crop_img)
cv2.imshow("cropped_image", crop_img)
class_text = get_class(clf, crop_img)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
text = class_text
cv2.putText(frame, text, (x,y+h),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
# # draw the text and timestamp on the frame
# #color=color+255/cnts
# cv2.putText(frame, "Room Status: {}".format(text), (10, 20),
# cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
# cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y %I:%M:%S%p"),
# (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1)
# show the frame and record if the user presses a key
cv2.imshow("Security Feed", frame)
cv2.imshow("Thresh", thresh)
cv2.imshow("Frame Delta", frameDelta)
key = cv2.waitKey(1) & 0xFF
# if the `q` key is pressed, break from the lop
if key == ord("q"):
break
# cleanup the camera and close any open windows
camera.release()
cv2.destroyAllWindows()