-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain-Part2b.py
211 lines (193 loc) · 6.4 KB
/
main-Part2b.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 3 13:34:15 2018
@author: huwei
"""
from helper2 import Regression
import numpy as np
# Only for quadratic programming & linear programming
import matplotlib.pyplot as plt
import pandas as pd
import os
##############################################################################
# Part 2-b
##############################################################################
# Load data
# Training input
trainx = np.loadtxt('PA-1-data-text/count_data_trainx.txt')
trainx = trainx.T
# Training output
trainy = np.loadtxt('PA-1-data-text/count_data_trainy.txt')
trainy = trainy.T
# Testing input
testx = np.loadtxt('PA-1-data-text/count_data_testx.txt')
testx = testx.T
# Output values for the true functions
testy = np.loadtxt('PA-1-data-text/count_data_testy.txt')
testy = testy.T
print(trainx.shape)
print(trainy.shape)
print(testx.shape)
print(testy.shape)
######################################################
# Set parameters
# std of noise
sigma = np.std(trainy)
# parameter for RLS
lamb_1 = 5
# parameter for LASSO
lamb_2 = 5
# parameters for BR
# alpha = 0, strong belief
# alpha = 1, uncertain about prior prob
alpha = 0.5
# Order of polynomial
degree = 2
interaction = False
save_path_data = os.path.join(os.getcwd(), 'Data')
save_path_fig = os.path.join(os.getcwd(), 'Plots')
######################################################
reg = Regression(trainx, trainy, testx, testy, \
lamb_1, lamb_2, alpha, sigma, degree, interaction)
######################################################
save_path_fig_b = os.path.join(save_path_fig,'2-b-1')
save_path_data_b = os.path.join(save_path_data, '2-b-1')
# LS
method = 'LS'
[theta_LS, f_LS, MSE_LS, MAE_LS] = reg.Run(method)
print(theta_LS)
print(MSE_LS)
print(MAE_LS)
# Plot
plt.scatter(f_LS,testy,c='g', s = 10, label = 'Result')
temp = np.linspace(min(testy),max(testy),100)
plt.plot(temp, temp, c = 'b', label = r'$y=x$')
plt.xlabel('Prediction Counts', fontsize=18)
plt.ylabel('True Counts', fontsize=18)
plt.legend(loc = 'best', fontsize=18)
plt.title(method, fontsize=18)
plt.grid(which = 'both')
fig = plt.gcf()
fig.set_size_inches(15, 15)
plt.savefig(os.path.join(save_path_fig_b,'plot_'+str(method)+".png"), dpi = 100)
plt.show()
######################################################
# RLS
method = 'RLS'
[theta_RLS, f_RLS, MSE_RLS, MAE_RLS] = reg.Run(method)
print(theta_RLS)
print(MSE_RLS)
print(MAE_RLS)
# Plot
plt.scatter(f_RLS,testy,c='g', s = 10, label = 'Result')
temp = np.linspace(min(testy),max(testy),100)
plt.plot(temp, temp, c = 'b', label = r'$y=x$')
plt.xlabel('Prediction Counts', fontsize=18)
plt.ylabel('True Counts', fontsize=18)
plt.legend(loc = 'best', fontsize=18)
plt.title(method, fontsize=18)
plt.grid(which = 'both')
fig = plt.gcf()
fig.set_size_inches(15, 15)
plt.savefig(os.path.join(save_path_fig_b,'plot_'+str(method)+".png"), dpi = 100)
plt.show()
######################################################
# LASSO
method = 'LASSO'
[theta_LASSO, f_LASSO, MSE_LASSO, MAE_LASSO] = reg.Run(method)
print(theta_LASSO)
print(MSE_LASSO)
print(MAE_LASSO)
# Plot
plt.scatter(f_LASSO,testy,c='g', s = 10, label = 'Result')
temp = np.linspace(min(testy),max(testy),100)
plt.plot(temp, temp, c = 'b', label = r'$y=x$')
plt.xlabel('Prediction Counts', fontsize=18)
plt.ylabel('True Counts', fontsize=18)
plt.legend(loc = 'best', fontsize=18)
plt.title(method, fontsize=18)
plt.grid(which = 'both')
fig = plt.gcf()
fig.set_size_inches(15, 15)
plt.savefig(os.path.join(save_path_fig_b,'plot_'+str(method)+".png"), dpi = 100)
plt.show()
######################################################
# RR
method = 'RR'
[theta_RR, f_RR, MSE_RR, MAE_RR] = reg.Run(method)
print(theta_RR)
print(MSE_RR)
print(MAE_RR)
# Plot
plt.scatter(f_RR,testy,c='g', s = 10, label = 'Result')
temp = np.linspace(min(testy),max(testy),100)
plt.plot(temp, temp, c = 'b', label = r'$y=x$')
plt.xlabel('Prediction Counts', fontsize=18)
plt.ylabel('True Counts', fontsize=18)
plt.legend(loc = 'best', fontsize=18)
plt.title(method, fontsize=18)
plt.grid(which = 'both')
fig = plt.gcf()
fig.set_size_inches(15, 15)
plt.savefig(os.path.join(save_path_fig_b,'plot_'+str(method)+".png"), dpi = 100)
plt.show()
######################################################
# BR
method = 'BR'
[theta_BR_mu, theta_BR_sigma, f_BR_mu, f_BR_sigma, MSE_BR,MAE_BR] = reg.Run(method)
print(theta_BR_mu)
print(MSE_BR)
print(MAE_BR)
# Plot
plt.scatter(f_BR_mu,testy,facecolors='none', edgecolors='g', s = np.diag(f_BR_sigma)*20, label = 'Result w/ size')
temp = np.linspace(min(testy),max(testy),100)
plt.plot(temp, temp, c = 'b', label = r'$y=x$')
plt.xlabel('Prediction Counts', fontsize=18)
plt.ylabel('True Counts', fontsize=18)
plt.legend(loc = 'best', fontsize=18)
plt.title(method, fontsize=18)
plt.grid(which = 'both')
fig = plt.gcf()
fig.set_size_inches(15, 15)
plt.savefig(os.path.join(save_path_fig_b,'plot_'+str(method)+".png"), dpi = 100)
plt.show()
######################################################
# Save dat
thetas = pd.DataFrame()
fs = pd.DataFrame()
errors = pd.DataFrame()
thetas = pd.concat([thetas, pd.DataFrame(theta_LS)],axis=1)
thetas = pd.concat([thetas, pd.DataFrame(theta_RLS)],axis=1)
thetas = pd.concat([thetas, pd.DataFrame(theta_LASSO)],axis=1)
thetas = pd.concat([thetas, pd.DataFrame(theta_RR)],axis=1)
thetas = pd.concat([thetas, pd.DataFrame(theta_BR_mu)],axis=1)
thetas = pd.concat([thetas, pd.DataFrame(np.diag(theta_BR_sigma))],axis=1)
thetas.columns = ['LS', 'RLS', 'LASSO', 'RR', 'BR-mu', 'BR-sigma']
thetas.to_csv(os.path.join(save_path_data_b,'thetas.csv'))
fs = pd.concat([fs, pd.DataFrame(f_LS)],axis=1)
fs = pd.concat([fs, pd.DataFrame(f_RLS)],axis=1)
fs = pd.concat([fs, pd.DataFrame(f_LASSO)],axis=1)
fs = pd.concat([fs, pd.DataFrame(f_RR)],axis=1)
fs = pd.concat([fs, pd.DataFrame(f_BR_mu)],axis=1)
fs = pd.concat([fs, pd.DataFrame(np.diag(f_BR_sigma))],axis=1)
fs.columns = ['LS', 'RLS', 'LASSO', 'RR', 'BR-mu', 'BR-sigma']
fs.to_csv(os.path.join(save_path_data_b,'fs.csv'))
MSEs = []
MSEs.append(MSE_LS)
MSEs.append(MSE_RLS)
MSEs.append(MSE_LASSO)
MSEs.append(MSE_RR)
MSEs.append(MSE_BR)
errors = pd.concat([errors, pd.DataFrame(MSEs)], axis = 1)
MAEs = []
MAEs.append(MAE_LS)
MAEs.append(MAE_RLS)
MAEs.append(MAE_LASSO)
MAEs.append(MAE_RR)
MAEs.append(MAE_BR)
errors = pd.concat([errors, pd.DataFrame(MAEs)], axis = 1)
errors.columns = ['MSE', 'MAE']
errors.index = ['LS', 'RLS', 'LASSO', 'RR', 'BR']
errors.to_csv(os.path.join(save_path_data_b,'errors.csv'))
print(errors)