-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_segmentation.py
122 lines (106 loc) · 4.85 KB
/
image_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import tensorflow as tf, numpy as np, matplotlib.pyplot as plt
from tensorflow.keras.callbacks import TensorBoard
from get_dataset import return_dataset
from models import get_model
plt.style.use('dark_background')
MODEL_NAME = "modded_unet"
DATASET_NAME = "oxford_pets"
classes_dict = {"oxford_pets":3,
"pascal_voc":21}
IMG_SIZE = 224
N_CLASSES = classes_dict[DATASET_NAME]
EPOCHS = 13
BATCH_SIZE = 12
MODEL_SAVEPATH = "./saved_models/"
TENSORBOARD_LOGDIR = "./tensorboard"
class DisplayCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
clear_output(wait=True)
show_predictions()
#print ('\nSample Prediction after epoch {}\n'.format(epoch+1))
class SegModel:
def __init__(self, model_path=None):
if model_path is not None:
try:
self.model = self.load_model(model_path)
except:
print("\nError loading model. Building model with randomised weights\n")
self.model = get_model.main(MODEL_NAME, IMG_SIZE, N_CLASSES)
else:
self.model = get_model.main(MODEL_NAME, IMG_SIZE, N_CLASSES)
def train_model(self, train_data, savepath, save, val_data=None):
if val_data is None:
history = self.model.fit(train_data.batch(BATCH_SIZE),
epochs=EPOCHS,
callbacks=[TensorBoard(log_dir=TENSORBOARD_LOGDIR, write_images=True)],
verbose=1)
else:
VAL_SUBSPLITS = 5
VALIDATION_STEPS = int(val_data.cardinality())//BATCH_SIZE//VAL_SUBSPLITS
history = self.model.fit(train_data.batch(BATCH_SIZE),
epochs=EPOCHS,
validation_steps=VALIDATION_STEPS,
validation_data=val_data,
callbacks=[TensorBoard(log_dir=TENSORBOARD_LOGDIR, write_images=True)],
verbose=1)
if save:
self.save_model(savepath)
return history
def predict_datapt_with_model(self, x):
x = np.reshape(x.numpy(), (1, IMG_SIZE, IMG_SIZE, 3))
return self.model.predict(x)
def validate_model(self, val_data, batch_size=128):
results = self.model.evaluate(val_data.batch(batch_size))
print("test loss, test acc:", results)
return results
def sample_prediction(self, data, n=3):
for img, label in data.take(n):
pred_label = self.predict_datapt_with_model(img)
#print(pred_label)
title = ["image", "label", "prediction"]
plt.figure(figsize=(25, 25))
def create_mask(pred_mask):
pred_mask = tf.argmax(pred_mask, axis=-1)
pred_mask = pred_mask[..., tf.newaxis]
return pred_mask[0]
for i, data in enumerate([img, label, pred_label]):
plt.subplot(1, 3, i+1)
#print("\nTitle: %s\n\n"%title[i]+str(np.unique(data, return_counts=True)))
if i == 0:
data = data.numpy()
plt.imshow(data)
elif i == 1:
data = data.numpy()
plt.imshow(data, cmap=plt.get_cmap('tab20'))
elif i == 2:
mask = create_mask(data)
#print("\nMask: \n\n"+str(np.unique(mask, return_counts=True)))
plt.imshow(mask, cmap=plt.get_cmap('tab20'))
plt.axis("off")
#print(np.array(data).shape)
plt.tight_layout()
plt.show()
def save_model(self, model_path):
self.model.save(model_path)
def load_model(self, path):
return tf.keras.models.load_model(path)
def plot_train_stats(self, history, results=None):
plt.figure()
plt.plot(range(EPOCHS), history.history['loss'], 'r', label='Training loss')
plt.plot(range(EPOCHS), history.history['accuracy'], 'bo', label='Accuracy')
if results is not None:
plt.plot(range(EPOCHS), results.history['loss'], 'g', label='Validation loss')
plt.title('Training Loss and accuracy')
plt.xlabel('Epoch')
plt.ylabel('Loss Value')
plt.legend()
plt.tight_layout()
plt.show()
#model = SegModel(MODEL_SAVEPATH + DATASET_NAME)
model = SegModel()
#tf.keras.utils.plot_model(model, show_shapes=True)
train, val, test = return_dataset(DATASET_NAME, IMG_SIZE)
#history = model.train_model(train, savepath=MODEL_SAVEPATH + DATASET_NAME, save=True)#, val_data=val)
#results = model.validate_model(val)
#model.plot_train_stats(history)
model.sample_prediction(test)