From 7ad659b9983b631e76ddfc9cddc353d2aca0b1fd Mon Sep 17 00:00:00 2001 From: Vishrut Bezbarua Date: Fri, 27 Dec 2024 18:56:27 +0100 Subject: [PATCH] Update index.md --- index.md | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) diff --git a/index.md b/index.md index 7ec983c..fcbdd0e 100644 --- a/index.md +++ b/index.md @@ -140,6 +140,22 @@ EDA involved: Z = \frac{X - \mu}{\sigma} $$ +Where : +- **\( Z \):** The Z-score, representing the normalized value of the feature. It indicates how many standard deviations a particular value (\( X \)) is from the mean (\( \mu \)). +- **\( X \):** The original value of the feature being normalized. +- **\( \mu \):** The mean (average) value of the feature, calculated as: + $$ + \mu = \frac{\sum_{i=1}^{n} X_i}{n} + $$ + where: + - \( n \): Number of data points. + - \( X_i \): Individual feature values. + +- **\( \sigma \):** The standard deviation of the feature, measuring the spread or variability of the data around the mean, calculated as: + $$ + \sigma = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{n}} + $$ + ### Clustering Process 1. **Optimal K Selection**: - Used the **Elbow Method** and **Silhouette Scores** to determine \( k = 4 \).