You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# Main query weight: 0
./ltr-end-to-end.sh -y -m 0
# "quantiles" click model# `click model` responsible for calculating `judgement` for each query+doc
./ltr-end-to-end.sh -y -m 0 -c quantiles
# --analyze_explains - run the queries from LTR queries that performed WORSE than the non-LTR query # --analyze - Calculate a variety of stats and other things about the results# outputs `simple_ltr_explains.csv` file
python week1/utilities/build_ltr.py \
--analyze \
--output_dir /Users/vitalii.mishchenko/Documents/personal/opensearch/ltr_output \
--analyze_explains
Start Docker compose
cd docker
docker-compose up
# open Open Search Dashboard
http://localhost:5601
# completely remove previous containers
docker-compose rm
Download data from Kaggle
# Set up Kaggle API
touch /Users/vitalii.mishchenko/.kaggle/kaggle.json
chmod 600 /Users/vitalii.mishchenko/.kaggle/kaggle.json
# Create folder that contains datasets
mkdir -p /Users/vitalii.mishchenko/Documents/personal/opensearch/data
cd /Users/vitalii.mishchenko/Documents/personal/opensearch/data
# Download data
kaggle competitions download -c acm-sf-chapter-hackathon-big
unzip acm-sf-chapter-hackathon-big.zip
tar -xf product_data.tar.gz
# Cleaning up to save space
rm acm-sf-chapter-hackathon-big.zip
rm product_data.tar.gz
rm popular_skus.csv