-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
327 lines (291 loc) · 15.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import os
from functools import partial
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import datasets
from util.dictionary import build_dictionary
import util.misc as utils
from datasets import build_dataset, get_coco_api_from_dataset, SubsetRandomSampler
from engine import evaluate, train_one_epoch
# from models import build_model
from playground import build_all_model
from timm.utils import NativeScaler
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-3, type=float)
parser.add_argument('--lr_backbone', default=1e-4, type=float)
parser.add_argument('--weight_decay', default=0.05, type=float)
parser.add_argument('--filter_weight_decay', action='store_true')# zychen
parser.add_argument('--batch_size', default=4, type=int)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--lr_drop', default=200, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--amp_train', action='store_true', help='amp fp16 training or not')
parser.add_argument('--eval_epoch', default=5, type=int)
# Pix2Seq
parser.add_argument('--model', type=str, default="pix2seq",
help="specify the model from playground")
parser.add_argument('--pix2seq_lr', action='store_true', help='use warmup linear drop lr')
parser.add_argument('--large_scale_jitter', action='store_true', help='large scale jitter')
parser.add_argument('--rand_target', action='store_true',
help="randomly permute the sequence of input targets")
parser.add_argument('--pred_eos', action='store_true', help='use eos token instead of predicting 100 objects')
# zychen for augmentation
parser.add_argument('--aug_scale_min', default=0.3, type=float)
parser.add_argument('--aug_scale_max', default=2.0, type=float)
parser.add_argument('--color_distortion', action='store_true', dest='color_distortion')
parser.add_argument('--no_color_distortion', action='store_false', dest='color_distortion')
parser.set_defaults(color_distortion=True)
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--pretrained', action='store_true',
help="whether to use pretrain model or not")
parser.add_argument('--position_embedding', default='mine', type=str, choices=('sine', 'learned', 'mine'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=1024, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.0, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--drop_path', default=0.1, type=float,
help="DropPath applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--pre_norm', action='store_true')
parser.add_argument('--classifier_norm', action='store_true')
# * Loss coefficients
parser.add_argument('--eos_coef', default=1.0, type=float,
help="Relative classification weight of the no-object class")
parser.add_argument('--loss_type', default='ce', type=str, choices=('ce', 'ce_specific', 'focal'))
parser.add_argument('--focal_alpha', default=0.25, type=float)
# dataset parameters
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str)
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--remove_empty_annotations', action='store_true') # zychen
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=2, type=int)
# zychen for sampling
parser.add_argument('--top_k', default=0, type=int)
parser.add_argument('--top_p', default=0.4, type=float)
parser.add_argument('--temperature', default=1., type=float)
# zychen for evaluation
parser.add_argument('--eval', action='store_true')
parser.add_argument('--eos_bias', default=0., type=float)
parser.add_argument('--eval_p', default=0., type=float)
# zychen added
parser.add_argument('--max_input_size', default=1333, type=int)
parser.add_argument('--max_objects', default=100, type=int)
parser.add_argument('--num_bins', default=2000, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--rank', default=-1, type=int)
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
# zychen added
parser.add_argument('--return_intermediate_dec', action='store_true')
parser.add_argument('--query_pos', action='store_true')
parser.add_argument('--drop_cls', default=0., type=float)
return parser
def main(args):
utils.init_distributed_mode(args)
print(args)
print("git:\n {}\n".format(utils.get_sha()))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
args.dictionary = build_dictionary(args)
model, criterion, postprocessors = build_all_model[args.model](args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
# build param_dicts
skip_list = ["transformer.vocal_embed.weight", "transformer.det_embed.weight", "transformer.query_pos.weight", "backbone.1.pos_embed"]
weight_backbone, bias_backbone, weight_head, bias_head = [], [], [], []
for n, p in model_without_ddp.named_parameters():
if args.filter_weight_decay:
if "backbone.0" in n:
if len(p.shape) == 1 or n.endswith(".bias"):
bias_backbone.append(p)
else:
weight_backbone.append(p)
else:
if len(p.shape) == 1 or n.endswith(".bias") or n in skip_list:
bias_head.append(p)
else:
weight_head.append(p)
else:
if "backbone" in n:
weight_backbone.append(p)
else:
weight_head.append(p)
param_dicts = [
{"params": weight_backbone, "lr": args.lr_backbone, "weight_decay": args.weight_decay},
{"params": bias_backbone, "lr": args.lr_backbone, "weight_decay": 0.},
{"params": weight_head, "lr": args.lr, "weight_decay": args.weight_decay},
{"params": bias_head, "lr": args.lr, "weight_decay": 0.},
]
for item in param_dicts:
print(f"{len(item['params'])} items with lr {item['lr']}, weight decay {item['weight_decay']}")
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
if args.pix2seq_lr:
lr_scheduler = utils.WarmupLinearDecayLR(
optimizer,
warmup_factor=0.01,
warmup_iters=10,
warmup_method="linear",
end_epoch=args.epochs,
final_lr_factor=0.01)
else:
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
loss_scaler = NativeScaler() if args.amp_train else utils.NoScaler()
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val', args=args)
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=partial(utils.collate_fn, fix_input=args.max_input_size), num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=partial(utils.collate_fn, fix_input=args.max_input_size), num_workers=args.num_workers)
if args.dataset_file == "coco_panoptic":
# We also evaluate AP during panoptic training, on original coco DS
coco_val = datasets.coco.build("val", args)
base_ds = get_coco_api_from_dataset(coco_val)
else:
base_ds = get_coco_api_from_dataset(dataset_val)
output_dir = Path(args.output_dir)
cur_ap = max_ap = 0.0
if (not args.resume) and os.path.exists(str(output_dir/"checkpoint.pth")):
args.resume = str(output_dir/"checkpoint.pth")
if args.resume:
print(f"Resuming from {args.resume} ...")
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint['model'] if 'model' in checkpoint else checkpoint, strict=False)
if len(missing_keys) > 0:
print('Missing Keys: {}'.format(missing_keys))
if len(unexpected_keys) > 0:
print('Unexpected Keys: {}'.format(unexpected_keys))
if 'epoch' in checkpoint:
print(f"Resuming from Epoch {checkpoint['epoch']} ...")
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if 'ap' in checkpoint:
cur_ap = checkpoint['ap']
max_ap = checkpoint['max_ap']
if args.eval:
test_stats, coco_evaluator = evaluate(model, criterion, postprocessors,
data_loader_val, base_ds, device, args.output_dir)
print("Evaluation Results")
print({f'test_{k}': v for k, v in test_stats.items()})
if args.output_dir:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
return
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch,
loss_scaler, args.clip_max_norm, amp_train=args.amp_train)
lr_scheduler.step()
if epoch % args.eval_epoch == args.eval_epoch -1 or epoch == (args.lr_drop - 1) or epoch == (args.epochs - 1):
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir
)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
cur_ap = test_stats['coco_eval_bbox'][0]
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
test_stats = coco_evaluator = None
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 10 == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
if cur_ap > max_ap:
checkpoint_paths.append(output_dir / 'checkpoint_best.pth')
max_ap = cur_ap
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
'ap': cur_ap,
'max_ap': max_ap,
}, checkpoint_path)
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
# for evaluation logs
if coco_evaluator is not None:
(output_dir / 'eval').mkdir(exist_ok=True)
if "bbox" in coco_evaluator.coco_eval:
filenames = ['latest.pth']
if epoch % 50 == 0:
filenames.append(f'{epoch:03}.pth')
for name in filenames:
torch.save(coco_evaluator.coco_eval["bbox"].eval,
output_dir / "eval" / name)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('Pix2Seq training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)