-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunning_mean_std.py
executable file
·48 lines (37 loc) · 1.73 KB
/
running_mean_std.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# From https://github.com/openai/baselines/blob/b5be53dc928bc19c39bce2a3f8a4e7dd0374f1dd/baselines/common/running_mean_std.py
import numpy as np
class RunningMean(object):
def __init__(self, _sum=0, _count=0):
self.sum = _sum
self.count = _count
self.mean = 0.0 if _count == 0 else float(_sum) / _count
def update(self,x):
self.sum += x
self.count += 1
self.mean = float(self.sum) / self.count
def fork(self,list_of_x):
return [RunningMean(self.sum+x, self.count+1) for x in list_of_x]
class RunningMeanStd(object):
# https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
def __init__(self, epsilon=1e-4, shape=()):
self.mean = np.zeros(shape, 'float64')
self.var = np.ones(shape, 'float64')
self.count = epsilon
def update(self, x):
batch_mean = np.mean(x, axis=0)
batch_var = np.var(x, axis=0)
batch_count = x.shape[0]
self.update_from_moments(batch_mean, batch_var, batch_count)
def update_from_moments(self, batch_mean, batch_var, batch_count):
self.mean, self.var, self.count = update_mean_var_count_from_moments(
self.mean, self.var, self.count, batch_mean, batch_var, batch_count)
def update_mean_var_count_from_moments(mean, var, count, batch_mean, batch_var, batch_count):
delta = batch_mean - mean
tot_count = count + batch_count
new_mean = mean + delta * batch_count / tot_count
m_a = var * count
m_b = batch_var * batch_count
M2 = m_a + m_b + np.square(delta) * count * batch_count / (count + batch_count)
new_var = M2 / (count + batch_count)
new_count = batch_count + count
return new_mean, new_var, new_count