-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_reranker.py
292 lines (245 loc) · 8.37 KB
/
train_reranker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from env import R2RBatch
from refer360_env import Refer360Batch
from utils import Tokenizer, read_vocab
from vocab import TRAIN_VOCAB
from train import make_arg_parser
from utils import get_arguments
from pprint import pprint
import os
arg_parser = make_arg_parser()
arg_parser.add_argument('--cache_path', type=str,
required=True)
args = get_arguments(arg_parser)
vocab = read_vocab(TRAIN_VOCAB, args.language)
tok = Tokenizer(vocab)
if args.env == 'r2r':
EnvBatch = R2RBatch
elif args.env in ['refer360']:
EnvBatch = Refer360Batch
if args.prefix in ['refer360', 'r2r', 'R2R', 'REVERIE', 'r360tiny', 'RxR_en-ALL']:
val_splits = ['val_unseen', 'val_seen']
target = 'val_unseen'
elif args.prefix in ['touchdown', 'td']:
val_splits = ['dev']
target = 'dev'
env = EnvBatch(['none'],
splits=['train'] + val_splits,
tokenizer=tok,
args=args)
if args.env == 'r2r':
error_margin = 3.0
elif args.env in ['refer360']:
error_margin = env.distances[0][1] * (2**0.5) + 1
import torch
import torch.nn as nn
import json
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
class Net(nn.Module):
def __init__(self, input_dim):
super(Net, self).__init__()
if args.env == 'r2r':
self.net = nn.Sequential(
nn.BatchNorm1d(input_dim),
nn.Linear(input_dim, input_dim),
nn.BatchNorm1d(input_dim),
nn.Tanh(),
nn.Linear(input_dim, 1)
)
elif args.env == 'refer360':
self.net = nn.Sequential(
nn.Linear(input_dim, input_dim),
nn.Tanh(),
nn.Linear(input_dim, 1)
)
else:
raise NotImplementedError()
def forward(self, x):
x = self.net(x).squeeze(-1)
return x
def average(_l):
return float(sum(_l)) / len(_l)
def count_prefix_len(l1, l2):
res = 0
while(res < len(l1) and res < len(l2) and l1[res] == l2[res]):
res += 1
return res
def get_path_len(scanId, path):
path_len = 0
prev = path[0]
for curr in path[1:]:
if args.env == 'r2r':
distance = env.distances[scanId][prev][curr]
elif args.env == 'refer360':
distance = env.distances[prev][curr]
else:
raise NotImplementedError()
path_len += distance
def load_data(filenames, split_names):
all_data = {}
for fn in filenames:
split = ''
for split_name in split_names:
if split_name in fn:
split = split_name
break
assert split != ''
with open(fn, 'r') as f:
train_file = json.loads(f.read())
train_instrs = list(train_file.keys())
train_data = {}
for instr_id in train_instrs:
path_id = instr_id.split('_')[0]
scanId = env.gt[path_id]['scan']
new_data = {
'instr_id': instr_id,
'candidates': [],
'candidates_path': [],
'reranker_inputs': [],
'distance': [],
'gt': env.gt[path_id],
'gold_idx': -1,
'goal_viewpointId': env.gt[path_id]['path'][-1],
'gold_len': get_path_len(scanId, env.gt[path_id]['path']),
}
self_len = 0
for i, candidate in enumerate(train_file[instr_id]):
_, world_states, actions, sum_logits, mean_logits, sum_logp, mean_logp, pm, speaker, scorer = candidate
new_data['candidates'].append(candidate)
new_data['candidates_path'].append([ws[1] for ws in world_states])
new_data['reranker_inputs'].append(
[len(world_states), sum_logits, mean_logits, sum_logp, mean_logp, pm, speaker] * 4)
if args.env == 'r2r':
distance = env.distances[scanId][world_states[-1]
[1]][new_data['goal_viewpointId']]
elif args.env == 'refer360':
distance = env.distances[world_states[-1]
[1]][new_data['goal_viewpointId']]
else:
raise NotImplementedError()
new_data['distance'].append(distance)
my_path = [ws[1] for ws in world_states]
if my_path == env.gt[path_id]['path']:
new_data['gold_idx'] = i
new_data['self_len'] = self_len
train_data[instr_id] = new_data
print(fn)
print('gold', average([d['gold_idx'] != -1 for d in train_data.values()]))
print('oracle', average(
[any([dis < error_margin for dis in d['distance']]) for d in train_data.values()]))
all_data[split] = train_data
return all_data
cache_list = []
for _f in os.listdir(args.cache_path):
if 'json' not in _f or 'cache' not in _f:
continue
cache_file = os.path.join(args.cache_path, _f)
cache_list.append(cache_file)
print('Cache list\n')
print('\n'.join(cache_list))
data_splits = load_data(cache_list, ['train'] + val_splits)
net = Net(28).cuda()
batch_labels = []
valid_points = 0
for training_point in data_splits['train'].values():
labels = training_point['distance']
gold_idx = np.argmin(labels)
ac_len = len(labels)
choice = 1
x_1 = []
x_2 = []
if choice == 1:
for i in range(ac_len):
for j in range(ac_len):
if labels[i] <= error_margin and labels[j] > error_margin:
x_1.append(i)
x_2.append(j)
valid_points += 1
else:
for i in range(ac_len):
if labels[i] > error_margin:
x_1.append(gold_idx)
x_2.append(i)
valid_points += 1
batch_labels.append((x_1, x_2))
print(valid_points)
x_1 = []
x_2 = []
optimizer = optim.SGD(net.parameters(), lr=0.00005, momentum=0.6)
best_performance = 0.0
for epoch in range(30): # loop over the dataset multiple times
epoch_loss = 0
for i, (instr_id, training_point) in enumerate(data_splits['train'].items()):
inputs = training_point['reranker_inputs']
labels = training_point['distance']
ac_len = len(labels)
inputs = torch.stack([torch.Tensor(r) for r in inputs]).cuda()
labels = torch.Tensor(labels)
scores = net(inputs)
if i % 10 == 0 and len(x_1):
x1 = torch.cat(x_1, 0)
x2 = torch.cat(x_2, 0)
loss = F.relu(1.0 - (x1 - x2)).mean()
#s = x1-x2
#loss = (-s + torch.log(1 + torch.exp(s))).mean()
loss.backward()
epoch_loss += loss.item()
optimizer.step()
optimizer.zero_grad()
x_1 = []
x_2 = []
if len(batch_labels[i][0]) > 0:
x_1.append(scores[batch_labels[i][0]])
x_2.append(scores[batch_labels[i][1]])
print('epoch', epoch, 'loss', epoch_loss)
for env_name in ['train'] + val_splits:
successes = []
data_dict = data_splits[env_name]
for instr_id, point in data_dict.items():
inputs = point['reranker_inputs']
labels = point['distance']
inputs = torch.stack([torch.Tensor(r) for r in inputs]).cuda()
labels = torch.Tensor(labels)
scores = net(inputs)
pred = scores.max(0)[1].item()
successes.append(int(labels[pred] <= error_margin))
print(env_name, average(successes))
if env_name is target and average(successes) > best_performance:
best_performance = average(successes)
save_path = os.path.join(
args.cache_path, 'candidates_ranker_{}_{}'.format(env_name, best_performance))
print('saving to', save_path)
torch.save(net.state_dict(), save_path)
print('Finished Training')
for env_name in ['train'] + [target]:
data_dict = data_splits[env_name]
successes = []
inspect = [1, 2, 3, 4, 5, 6]
other_success = [[] for _ in range(len(inspect))]
spl = []
for instr_id, point in data_dict.items():
inputs = point['reranker_inputs']
labels = point['distance']
inputs = torch.stack([torch.Tensor(r) for r in inputs]).cuda()
labels = torch.Tensor(labels)
scores = net(inputs)
pred = scores.max(0)[1].item()
successes.append(int(labels[pred] < error_margin))
if (int(labels[pred] < error_margin)):
for i in range(len(point['distance'])):
pass
#print( point['reranker_inputs'][i])
#print( scores[i].item(), point['distance'][i], point['reranker_inputs'][i][5])
# print("\n")
for idx, i in enumerate(inspect):
pred = np.argmax([_input[i] for _input in point['reranker_inputs']])
other_success[idx].append(int(labels[pred] < error_margin))
print(env_name, average(successes))
for idx in range(len(inspect)):
print(average(other_success[idx]))
perf_name = '{:.4f}'.format(average(successes))
save_path = os.path.join(
args.cache_path, 'candidates_ranker_{}'.format(perf_name))
print('save_path:', save_path)
torch.save(net.state_dict(), save_path)