-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcards.py
224 lines (159 loc) · 6.23 KB
/
cards.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# -*- coding: utf-8 -*-
# Cards Dashboard
# Import Libraries
import time
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import plotly.io as pio
import pandas as pd
import dash
from dash import Input, Output, dcc, html
import dash_bootstrap_components as dbc
# Get data from CSV
df_in = pd.read_csv('https://raw.githubusercontent.com/vostpt/ICNF_DATA/main/ICNF_2013_2022_full.csv')
# DATA CLEAN UP
# Deal with some duplicates names across source and target
df_in["CONCELHO"] = df_in["CONCELHO"].str.capitalize()
# Sort values in dataframe
df_in = df_in.sort_values(['ANO','MES','DIA', 'DISTRITO','CONCELHO'])
# --------------------------------------# START APP #------------------------------------------------------------------------------------------------------------------
app = dash.Dash(
external_stylesheets=[dbc.themes.CYBORG],
#suppress_callback_exceptions=True,
meta_tags=[{"name": "viewport", "content": "width=device-width, initial-scale=1"}],
)
# Bring dataframe into the app cycle
df_app = df_in.groupby(['ANO','DISTRITO','NCCO'],as_index=False)['AREATOTAL'].sum()
df_app["DISTRITO"] = df_app["DISTRITO"].str.capitalize()
df_app['ANO']=df_app['ANO'].astype(str)
print(df_app.info())
print("HELLO")
print(df_app.head())
# Create First Variables
var_burnt_area = round(df_in.AREATOTAL.sum(),2)
var_total_fires = df_in.NCCO.count()
var_distrito = "All"
# Create first graph
fig = px.bar(df_app, x='ANO', y='AREATOTAL',template='plotly_dark')
# Design Cards
card_burnt_area = dbc.Card(
dbc.CardBody(
[
html.H5("Total Burnt Area (ha)", className="card-title"),
html.H2(var_burnt_area,id="card_total_burnt_area"),
]
), color="danger",
)
card_total_fires = dbc.Card(
dbc.CardBody(
[
html.H5("Total Rural Fires", className="card-title"),
html.H2(var_total_fires,id="card_total_fires"),
],
),color="info",
)
card_district = dbc.Card(
dbc.CardBody(
[
html.H5("District", className="card-title"),
html.H2(var_distrito,id="card_district_name"),
],
),color="primary",
)
# Create Cards Layout
cards = dbc.Row(
[
dbc.Col(card_district,width=6),
dbc.Col(card_total_fires, width=3),
dbc.Col(card_burnt_area, width=3),
],className="g-0",
)
# Create App Layout
app.layout = dbc.Container(
[
# First Row
dbc.Row(
[
dbc.Col(
html.Hr(
style={
"borderWidth": "2vh",
"width": "100%",
"borderColor": "#FFFFFF",
"opacity": "unset",
}
),
width={"size": 12},
),
],
className="g-0",
), # end of first row
cards,
dbc.Row(
dbc.Col(
dcc.Dropdown(
id="dropdown_district",
options=[
{"label": i, "value": i}
for i in df_app.DISTRITO.unique()]+
[{'label': 'Todos', 'value': 'all_values'}],
optionHeight=35, # height/space between dropdown options
value='all_values', # dropdown value selected automatically when page loads
disabled=False, # disable dropdown value selection
multi=False, # allow multiple dropdown values to be selected
searchable=True, # allow user-searching of dropdown values
search_value="", # remembers the value searched in dropdown
placeholder="Please select District", # gray, default text shown when no option is selected
clearable=True, # allow user to removes the selected value
style={
"width": "100%"
}, # use dictionary to define CSS styles of your dropdown
# className='select_box', #activate separate CSS document in assets folder
# persistence=True, #remembers dropdown value. Used with persistence_type
# persistence_type='memory' #remembers dropdown value selected until...
),
),
),
dbc.Row(
dbc.Col(dcc.Graph(id="graph", figure=fig))
),
], # end container
) # end layout
# APP CALL BACKS FROM DROPDOWN
@app.callback(
Output(component_id="graph",component_property="figure"),
Input(component_id="dropdown_district", component_property="value"),
)
def build_graph(dropdown_district):
if dropdown_district == 'all_values':
dff = df_app
else:
dff= df_app[df_app['DISTRITO'].eq(dropdown_district)]
df_graph = dff
df_graph['ANO']=df_graph['ANO'].astype(str)
dff_graph = df_graph.groupby(['ANO','DISTRITO'],as_index=False)['AREATOTAL'].sum()
fig = px.bar(dff_graph, x=dff_graph['ANO'], y='AREATOTAL',template='plotly_dark',color='ANO')
return fig
@app.callback(
Output(component_id="card_total_fires",component_property="children"),
Output(component_id="card_total_burnt_area",component_property="children"),
Output(component_id="card_district_name",component_property="children"),
Input(component_id="dropdown_district", component_property="value"),
)
def cards_vars(dropdown_district):
if dropdown_district == 'all_values':
dff = df_app
else:
dff= df_app[df_app['DISTRITO'].eq(dropdown_district)]
var_total_fires = dff.NCCO.count()
var_burnt_area = round(dff.AREATOTAL.sum(),2)
if dropdown_district == 'all_values':
var_distrito = "All"
else:
var_distrito = dff.DISTRITO.iloc[0]
return var_total_fires, var_burnt_area,var_distrito
# Load APP
if __name__ == "__main__":
app.run_server(debug=True, port=8888)
# APP ENDS HERE