-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
198 lines (179 loc) · 5.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# PORTUGAL RADIATION PANEL (RADMAP)
# CODE: Pedro Lucas
# FILE: app.py
import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from pymongo import MongoClient
from dotenv import load_dotenv
import os
from apscheduler.schedulers.background import BackgroundScheduler
import time
import fetch
locals = []
info_local = []
# Load sensitive information
load_dotenv('.env')
host = os.getenv('MONGO_HOST')
user = os.getenv('MONGO_USER')
password = os.getenv('MONGO_PASSWORD')
database_name = os.getenv('MONGO_DATABASE')
collection_name = os.getenv('MONGO_COLLECTION')
# Conectar ao MongoDB
client = MongoClient(f"mongodb://{user}:{password}@{host}:27017/?authSource=admin")
db = client[database_name]
collection = db[collection_name]
def update_data():
"""Busca os dados do MongoDB e os converte para DataFrame"""
data = list(collection.find()) # Pega todos os documentos da coleção
for item in data:
item.pop('_id', None) # Remove o campo _id que é gerado automaticamente
db_df = pd.DataFrame(data)
return db_df
def get_place(place):
global latest_data
data = latest_data[latest_data['place'] == place]
return data.iloc[-1] if not data.empty else None
def get_all_from_place(place):
global latest_data
data = latest_data[latest_data['place'] == place]
df = pd.DataFrame(data, columns=['hour', 'place', 'value', 'latitude', 'longitude'])
return df
def create_dataframes():
"""Cria um DataFrame consolidado para os locais."""
global latest_data
data = []
for place in latest_data['place'].unique():
data.append(get_place(place))
df = pd.DataFrame(data, columns=['hour', 'place', 'value', 'latitude', 'longitude'])
return df
def fetch_and_update_data():
"""Busca novos dados a cada minuto e atualiza o DataFrame global."""
global latest_data
print("Atualizando dados...")
fetch.data_processing()
latest_data = update_data()
print("Dados atualizados!")
# Inicializa os dados
fetch_and_update_data()
latest_data = update_data()
# Configura o agendador para atualizar os dados a cada 5 minutos
scheduler = BackgroundScheduler()
scheduler.add_job(func=fetch_and_update_data, trigger="interval", minutes=5)
scheduler.start()
selected_place = "Lisboa"
# Cria a aplicação Dash
app = dash.Dash(__name__, title="Radioactivity Dashboard")
app.layout = html.Div([
html.Div(
id='info-title',
className='info-title',
children=[
html.H1("Radioactivity Dashboard"),
html.Div(
id='history',
className='history',
children=[
dcc.Dropdown(
id='title-dropdown',
options=[],
value=None,
className='dropdown'
),
html.Br(),
dcc.Graph(
id='history-graph',
)
])
]
),
dcc.Graph(
id='map',
),
html.A(
children=[
html.Img(
id='vostpt-logo',
src="assets/VOSTPT_LOGO_2023_cores.svg",
)
],
href="https://vost.pt",
),
dcc.Interval(
id='interval-component',
interval=60*5000, # Update every 5 minutes
n_intervals=0
)
])
@app.callback(
[Output('title-dropdown', 'options'),
Output('title-dropdown', 'value')],
Input('title-dropdown', 'value')
)
def update_dropdown(selected_place):
"""Atualiza as opções do dropdown com os locais disponÃveis."""
dropdown_options = [{'label': place, 'value': place} for place in latest_data['place'].unique()]
# Define o valor inicial como Lisboa se não houver seleção
if selected_place is None:
initial_value = "Lisboa"
else:
initial_value = selected_place
return dropdown_options, initial_value
@app.callback(
Output("history-graph", "figure"),
Input("title-dropdown", "value"))
def update_history_graph(place):
"""Atualiza o gráfico histórico com base no local selecionado."""
selected_place = place if place is not None else selected_place
fig = px.line(
get_all_from_place(selected_place),
x="hour",
y="value",
color="place"
)
return fig
@app.callback(
Output('map', 'figure'),
Input('interval-component', 'n_intervals')
)
def update_map(n_intervals):
figure=go.Figure(
data=go.Scattermapbox(
lat=create_dataframes()['latitude'],
lon=create_dataframes()['longitude'],
mode='markers',
marker=dict(
size=(create_dataframes()['value'] / 9) + 5, # Ajustar o tamanho dos marcadores
color=create_dataframes()['value'],
colorscale='Viridis', # Escala de cores para os marcadores
colorbar=dict(
title='Radioactivity'
)
),
text=create_dataframes()['value'],
customdata=create_dataframes()[['hour', 'place', 'value']],
hovertemplate=(
"<b>Hora:</b> %{customdata[0]}<br>"
"<b>Local:</b> %{customdata[1]}<br>"
"<b>Valor:</b> %{customdata[2]} nSv/h<br>"
"<extra></extra>"
)
),
layout=go.Layout(
mapbox=dict(
style="open-street-map", # Estilo do mapa
center=dict(lat=create_dataframes()['latitude'].mean(), lon=create_dataframes()['longitude'].mean()),
zoom=5
),
margin=dict(r=0, t=0, l=0, b=0)
)
)
return figure
if __name__ == '__main__':
try:
app.run_server(debug=False, host='0.0.0.0')
except (KeyboardInterrupt, SystemExit):
scheduler.shutdown()