-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-continuity.tex
516 lines (441 loc) · 21.7 KB
/
chap-continuity.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
\chapter{Continuous morphisms}
This chapter uses the apparatus from the section ``Partially ordered
dagger categories''.
\section{Traditional definitions of continuity}
In this section we will show that having a funcoid or reloid $\uparrow f$
corresponding to a function $f$ we can express continuity of it by
the formula $\uparrow f\circ\mu\sqsubseteq\nu\circ\uparrow f$ (or
similar formulas) where $\mu$ and $\nu$ are some spaces.
\subsection{\index{continuity!pre-topology}Pretopology}
Let $(A,\cl_{A})$ and $(B,\cl_{B})$ be preclosure spaces. Then by
definition a function $f:A\rightarrow B$ is continuous iff $f\cl_{A}(X)\subseteq\cl_{B}(fX)$
for every $X\in\subsets A$. Let now $\mu$ and $\nu$ be endofuncoids
corresponding correspondingly to $\cl_{A}$ and $\cl_{B}$. Then the
condition for continuity can be rewritten as
\[
\uparrow^{\mathsf{FCD}(\Ob\mu,\Ob\nu)}f\circ\mu\sqsubseteq\nu\circ\uparrow^{\mathsf{FCD}(\Ob\mu,\Ob\nu)}f.
\]
\subsection{\index{continuity!proximity}Proximity spaces}
Let $\mu$ and $\nu$ be proximity spaces (which I consider a special
case of endofuncoids). By definition a $\mathbf{Set}$-morphism~$f$
is a proximity-continuous map from $\mu$
to $\nu$ iff
\[
\forall X,Y\in\mathscr{T}(\Ob\mu):(X\rsuprel{\mu}Y\Rightarrow\rsupfun fX\rsuprel{\nu}\rsupfun fY).
\]
Equivalently transforming this formula we get
\begin{gather*}
\forall X,Y\in\mathscr{T}(\Ob\mu):(X\rsuprel{\mu}Y\Rightarrow\supfun f\uparrow X\suprel{\nu}\supfun f\uparrow Y);\\
\forall X,Y\in\mathscr{T}(\Ob\mu):(X\rsuprel{\mu}Y\Rightarrow\uparrow X\suprel{f^{-1}\circ\nu\circ f}\uparrow Y);\\
\forall X,Y\in\mathscr{T}(\Ob\mu):(X\rsuprel{\mu}Y\Rightarrow X\rsuprel{f^{-1}\circ\nu\circ f}Y);\\
\mu\sqsubseteq f^{-1}\circ\nu\circ f.
\end{gather*}
So a function $f$ is proximity continuous iff $\mu\sqsubseteq f^{-1}\circ\nu\circ f$.
\subsection{\index{continuity!uniformity}Uniform spaces}
Uniform spaces are a special case of endoreloids.
Let $\mu$ and $\nu$ be uniform spaces. By definition a $\mathbf{Set}$-morphism~$f$
is a uniformly continuous map from $\mu$ to $\nu$ iff
\[
\forall\varepsilon\in\up\nu\exists\delta\in\up\nu\forall(x,y)\in\delta:(fx,fy)\in\varepsilon.
\]
Equivalently transforming this formula we get:
\begin{gather*}
\forall\epsilon\in\up\nu\exists\delta\in\up\mu\forall(x,y)\in\delta:\{(fx,fy)\}\subseteq\epsilon;\\
\forall\epsilon\in\up\nu\exists\delta\in\up\mu\forall(x,y)\in\delta:f\circ\{(x,y)\}\circ f^{-1}\subseteq\epsilon;\\
\forall\epsilon\in\up\nu\exists\delta\in\up\mu:f\circ\delta\circ f^{-1}\subseteq\epsilon;\\
\forall\epsilon\in\up\nu:\uparrow^{\mathsf{RLD}(\Ob\mu,\Ob\nu)}f\circ\mu\circ(\uparrow^{\mathsf{RLD}(\Ob\mu,\Ob\nu)}f)^{-1}\sqsubseteq\uparrow^{\mathsf{RLD}(\Ob\mu,\Ob\nu)}\epsilon;\\
\uparrow^{\mathsf{RLD}(\Ob\mu,\Ob\nu)}f\circ\mu\circ(\uparrow^{\mathsf{RLD}(\Ob\mu,\Ob\nu)}f)^{-1}\sqsubseteq\nu.
\end{gather*}
So a function $f$ is uniformly continuous iff $f\circ\mu\circ f^{-1}\sqsubseteq\nu$.
\section{\index{continuity!generalized}Our three definitions of continuity}
I have expressed different kinds of continuity with simple algebraic
formulas hiding the complexity of traditional epsilon-delta notation
behind a smart algebra. Let's summarize these three algebraic formulas:
Let $\mu$ and $\nu$ be endomorphisms of some partially ordered semicategory.
Continuous functions can be defined as these morphisms $f$ of this
semicategory which conform to the following formula:
\[
f\in\continuous(\mu,\nu)\Leftrightarrow f\in\Hom(\Ob\mu,\Ob\nu)\land f\circ\mu\sqsubseteq\nu\circ f.
\]
If the semicategory is a partially ordered dagger semicategory then
continuity also can be defined in two other ways:
\begin{gather*}
f\in\continuous'(\mu,\nu)\Leftrightarrow f\in\Hom(\Ob\mu,\Ob\nu)\land\mu\sqsubseteq f^{\dagger}\circ\nu\circ f;\\
f\in\continuous''(\mu,\nu)\Leftrightarrow f\in\Hom(\Ob\mu,\Ob\nu)\land f\circ\mu\circ f^{\dagger}\sqsubseteq\nu.
\end{gather*}
\begin{rem}
In the examples (above) about funcoids and reloids the ``dagger functor''
is the reverse of a funcoid or reloid, that is $f^{\dagger}=f^{-1}$.\end{rem}
\begin{prop}
Every of these three definitions of continuity forms a wide sub-semicategory
(wide subcategory if the original semicategory is a category).\end{prop}
\begin{proof}
~
\begin{description}
\item [{$\continuous$}] Let $f\in\continuous(\mu,\nu)$, $g\in\continuous(\nu,\pi)$.
Then $f\circ\mu\sqsubseteq\nu\circ f$, $g\circ\nu\sqsubseteq\pi\circ g$,
$g\circ f\circ\mu\sqsubseteq g\circ\nu\circ f\sqsubseteq\pi\circ g\circ f$.
So $g\circ f\in\continuous(\mu,\pi)$. $1_{\Ob\mu}\in\continuous(\mu,\mu)$
is obvious.
\item [{$\continuous'$}] Let $f\in\continuous'(\mu,\nu)$, $g\in\continuous'(\nu,\pi)$.
Then $\mu\sqsubseteq f^{\dagger}\circ\nu\circ f$, $\nu\sqsubseteq g^{\dagger}\circ\pi\circ g$;
\[
\mu\sqsubseteq f^{\dagger}\circ g^{\dagger}\circ\pi\circ g\circ f;\quad\mu\sqsubseteq(g\circ f)^{\dagger}\circ\pi\circ(g\circ f).
\]
So $g\circ f\in\continuous'(\mu,\pi)$. $1_{\Ob\mu}\in\continuous'(\mu,\mu)$
is obvious.
\item [{$\continuous''$}] Let $f\in\continuous''(\mu,\nu)$, $g\in\continuous''(\nu,\pi)$.
Then $f\circ\mu\circ f^{\dagger}\sqsubseteq\nu$, $g\circ\nu\circ g^{\dagger}\sqsubseteq\pi$;
\[
g\circ f\circ\mu\circ f^{\dagger}\circ g^{\dagger}\sqsubseteq\pi;\quad(g\circ f)\circ\mu\circ(g\circ f)^{\dagger}\sqsubseteq\pi.
\]
So $g\circ f\in\continuous''(\mu,\pi)$. $1_{\Ob\mu}\in\continuous''(\mu,\mu)$
is obvious.
\end{description}
\end{proof}
\begin{prop}
For a monovalued morphism $f$ of a partially ordered dagger category
and its endomorphisms $\mu$ and $\nu$
\[
f\in\continuous'(\mu,\nu)\Rightarrow f\in\continuous(\mu,\nu)\Rightarrow f\in\continuous''(\mu,\nu).
\]
\end{prop}
\begin{proof}
Let $f\in\continuous'(\mu,\nu)$. Then $\mu\sqsubseteq f^{\dagger}\circ\nu\circ f$;
\[
f\circ\mu\sqsubseteq f\circ f^{\dagger}\circ\nu\circ f\sqsubseteq1_{\Dst f}\circ\nu\circ f=\nu\circ f;\quad f\in\continuous(\mu,\nu).
\]
Let $f\in\continuous(\mu,\nu)$. Then $f\circ\mu\sqsubseteq\nu\circ f$;
\[
f\circ\mu\circ f^{\dagger}\sqsubseteq\nu\circ f\circ f^{\dagger}\sqsubseteq\nu\circ1_{\Dst f}=\nu;\quad f\in\continuous''(\mu,\nu).
\]
\end{proof}
\begin{prop}
For an entirely defined morphism $f$ of a partially ordered dagger
category and its endomorphisms $\mu$ and $\nu$
\[
f\in\continuous''(\mu,\nu)\Rightarrow f\in\continuous(\mu,\nu)\Rightarrow f\in\continuous'(\mu,\nu).
\]
\end{prop}
\begin{proof}
Let $f\in\continuous''(\mu,\nu)$. Then $f\circ\mu\circ f^{\dagger}\sqsubseteq\nu$;
$f\circ\mu\circ f^{\dagger}\circ f\sqsubseteq\nu\circ f$; $f\circ\mu\circ1_{\Src f}\sqsubseteq\nu\circ f$;
$f\circ\mu\sqsubseteq\nu\circ f$; $f\in\continuous(\mu,\nu)$.
Let $f\in\continuous(\mu,\nu)$. Then $f\circ\mu\sqsubseteq\nu\circ f$;
$f^{\dagger}\circ f\circ\mu\sqsubseteq f^{\dagger}\circ\nu\circ f$;
$1_{\Src\mu}\circ\mu\sqsubseteq f^{\dagger}\circ\nu\circ f$; $\mu\sqsubseteq f^{\dagger}\circ\nu\circ f$;
$f\in\continuous'(\mu,\nu)$.
\end{proof}
For entirely defined monovalued morphisms our three definitions of
continuity coincide:
\begin{thm}\label{cont-eq}
If $f$ is a monovalued and entirely defined morphism of a partially
ordered dagger semicategory then
\[
f\in\continuous'(\mu,\nu)\Leftrightarrow f\in\continuous(\mu,\nu)\Leftrightarrow f\in\continuous''(\mu,\nu).
\]
\end{thm}
\begin{proof}
From two previous propositions.
\end{proof}
The classical general topology theorem that uniformly continuous function
from a uniform space to an other uniform space is proximity-continuous
regarding the proximities generated by the uniformities, generalized
for reloids and funcoids takes the following form:
\begin{thm}
If an entirely defined morphism of the category of reloids $f\in\continuous''(\mu,\nu)$
for some endomorphisms $\mu$ and $\nu$ of the category of reloids,
then $\mathsf{\tofcd}f\in\continuous'(\tofcd\mu,\tofcd\nu)$.\end{thm}
\begin{xca}
I leave a simple exercise for the reader to prove the last theorem.
\end{xca}
\begin{thm}
Let $\mu$ and $\nu$ be endomorphisms of some partially ordered dagger semicategory and
$f\in\Hom(\Ob\mu,\Ob\nu)$ be a monovalued, entirely defined morphism. Then
\[ f\in\continuous(\mu,\nu)\Leftrightarrow f\in\continuous(\mu^{\dagger},\nu^{\dagger}). \]
\end{thm}
\begin{proof}
\begin{multline*}
f \circ \mu \sqsubseteq \nu \circ f \Leftrightarrow \mu
\sqsubseteq f^{\dagger} \circ \nu \circ f \Rightarrow \\ \mu \circ
f^{\dagger} \sqsubseteq f^{\dagger} \circ \nu \circ f \circ f^{\dagger}
\Rightarrow \mu \circ f^{\dagger} \sqsubseteq f^{\dagger} \circ \nu
\Leftrightarrow \\ f \circ \mu^{\dagger} \sqsubseteq \nu^{\dagger} \circ f
\Rightarrow f^{\dagger} \circ f \circ \mu^{\dagger} \sqsubseteq
f^{\dagger} \circ \nu^{\dagger} \circ f \Rightarrow \\ \mu^{\dagger}
\sqsubseteq f^{\dagger} \circ \nu^{\dagger} \circ f \Leftrightarrow \mu
\sqsubseteq f^{\dagger} \circ \nu \circ f.
\end{multline*}
Thus $f \circ \mu \sqsubseteq \nu \circ f \Leftrightarrow \mu \Leftrightarrow
f \circ \mu^{\dagger} \sqsubseteq \nu^{\dagger} \circ f$.
\end{proof}
\section{Continuity for topological spaces}
\begin{prop}
The following are pairwise equivalent for funcoids $\mu$, $\nu$ and
a monovalued, entirely defined morphism~$f\in\Hom(\Ob\mu,\Ob\nu)$:
\begin{enumerate}
\item\label{fcd-cont-unfold} $\forall A \in \mathscr{T} \Ob \mu, B \in \up
\supfun{\nu} \rsupfun{f} A : \rsupfun{f^{- 1}}
B \in \up \rsupfun{\mu} A$.
\item\label{fcd-cont-main} $f \in \continuous (\mu, \nu)$.
\item\label{fcd-cont-rev} $f \in \continuous (\mu^{- 1} , \nu^{- 1})$.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{description}
\item[\ref{fcd-cont-main}$\Leftrightarrow$\ref{fcd-cont-rev}] By general $f \circ \mu \sqsubseteq \nu \circ
f \Leftrightarrow f \circ \mu^{\dagger} \sqsubseteq \nu^{\dagger}
\circ f$ formula above.
\item[\ref{fcd-cont-unfold}$\Leftrightarrow$\ref{fcd-cont-main}] \ref{fcd-cont-unfold} is equivalent to
$\rsupfun{\rsupfun{f^{- 1}}}
\up \supfun{\nu} \rsupfun{f} A \subseteq \up
\rsupfun{\mu} A$ equivalent to $\supfun{\nu} \rsupfun{f}
A \sqsupseteq \supfun{f} \rsupfun{\mu} A$
(used ``Orderings of filters'' chapter).
\end{description}
\end{proof}
\begin{cor}\label{top-cont}
The following are pairwise equivalent for topological spaces $\mu$,
$\nu$ and a monovalued, entirely defined morphism~$f\in\Hom(\Ob\mu,\Ob\nu)$:
\begin{enumerate}
\item\label{top-cont-unfold} $\forall x \in \Ob \mu, B \in \up \supfun{\nu}
\rsupfun{f} \{x\} : \rsupfun{f^{- 1}} B \in
\up \rsupfun{\mu} \{x\}$.
\item\label{top-cont-preim} Preimages (by $f$) of open sets are open.
\item\label{top-cont-main} $f \in \continuous (\mu, \nu)$ that is $\supfun{f}
\rsupfun{\mu} \{ x \} \sqsubseteq \supfun{\nu}
\rsupfun{f} \{ x \}$ for every $x \in \Ob \mu$.
\item\label{top-cont-rev} $f \in \continuous (\mu^{- 1} , \nu^{- 1})$ that is $\supfun{f}
\rsupfun{\mu^{- 1}} A \sqsubseteq \supfun{\nu^{- 1}}
\rsupfun{f} A$ for every $A \in \mathscr{T}
\Ob \mu$.
\end{enumerate}
\end{cor}
\begin{proof}
\ref{fcd-cont-main} from the previous proposition is equivalent to
$\supfun{f}\rsupfun{\mu}\{x\}\sqsubseteq\supfun{\nu}\rsupfun{f}\{x\}$
equivalent to $\rsupfun{\rsupfun{f^{- 1}}}
\up \supfun{\nu} \rsupfun{f} \{ x \} \subseteq
\up \rsupfun{\mu} \{ x \}$ for every $x \in \Ob
\mu$, equivalent to \ref{top-cont-unfold} (used ``Orderings of filters'' chapter).
It remains to prove \ref{top-cont-main}$\Leftrightarrow$\ref{top-cont-preim}.
\begin{description}
\item[\ref{top-cont-main}$\Rightarrow$\ref{top-cont-preim}] Let $B$ be an open set in $\nu$. For every $x \in
\rsupfun{f^{- 1}} B$ we have $f (x) \in B$ that is $B$ is a
neighborhood of $f (x)$, thus $\rsupfun{f^{-1}}B$ is a neighborhood of $x$. We have
proved that $\rsupfun{f^{- 1}} B$ is open.
\item[\ref{top-cont-preim}$\Rightarrow$\ref{top-cont-main}] Let $B$ be a neighborhood of $f (x)$. Then there is an
open neighborhood $B' \subseteq B$ of $f (x)$. $\rsupfun{f^{-1}}
B'$ is open and thus is a neighborhood of $x$ ($x \in \rsupfun{f^{-1}} B'$ because $f (x) \in B'$). Consequently
$\rsupfun{f^{-1}} B$ is a neighborhood of $x$.
\end{description}
Alternative proof of \ref{top-cont-preim}$\Leftrightarrow$\ref{top-cont-rev}:
\url{http://math.stackexchange.com/a/1855782/4876}
\end{proof}
\section{\texorpdfstring{$\continuous (\mu \circ \mu^{- 1} , \nu \circ \nu^{- 1})$}{C(mu o mu\textasciicircum-1, nu o nu\textasciicircum-1)}}
\begin{prop}
$f \in \continuous (\mu, \nu) \Rightarrow f \in \continuous'' (\mu
\circ \mu^{- 1} , \nu \circ \nu^{- 1})$ for endofuncoids $\mu$,
$\nu$ and monovalued funcoid $f \in \mathsf{FCD} (\Ob
\mu, \Ob \nu)$.
\end{prop}
\begin{proof}
Let $f \in \continuous (\mu, \nu)$.
\begin{multline*}
X \mathrel{[f \circ \mu \circ \mu^{- 1} \circ f^{- 1}]^{\ast}}
Z \Leftrightarrow \\ \exists p \in \atoms^{\mathscr{F}} : \left( X
\mathrel{[\mu^{- 1} \circ f^{- 1}]^{\ast}} p \wedge p \mathrel{[f
\circ \mu]^{\ast}} Z \right) \Leftrightarrow \\ \exists p \in
\atoms^{\mathscr{F}} : \left( p \mathrel{[f \circ \mu]^{\ast}} X
\wedge p \mathrel{[f \circ \mu]^{\ast}} Z \right) \Rightarrow \\ \exists
p \in \atoms^{\mathscr{F}} : \left( p \mathrel{[\nu \circ f]^{\ast}} X
\wedge p \mathrel{[\nu \circ f]^{\ast}} Z \right) \Leftrightarrow \\ \exists p
\in \atoms^{\mathscr{F}} : \left( \rsupfun{f} p
\mathrel{[\nu]^{\ast}} X \wedge \rsupfun{f} p
\mathrel{[\nu]^{\ast}} Z \right) \Rightarrow X \mathrel{[\nu \circ \nu^{-
1}]^{\ast}} Z
\end{multline*}
(taken into account monovaluedness of $f$ and thus that
$\rsupfun{f} p$ is atomic or least). Thus $f \circ \mu
\circ \mu^{- 1} \circ f^{- 1} \sqsubseteq \nu \circ \nu^{- 1}$ that is
$f \in \continuous'' (\mu \circ \mu^{- 1} , \nu \circ \nu^{-
1})$.
\end{proof}
\begin{prop}
$f \in \continuous'' (\mu \circ \mu^{- 1} , \nu \circ \nu^{- 1})
\Rightarrow f \in \continuous'' (\mu, \nu)$ for complete endofuncoids
$\mu$, $\nu$ and principal funcoid $f \in \mathsf{FCD}
(\Ob \mu, \Ob \nu)$, provided that $\mu$ is
reflexive, and $\nu$ is $T_1$-separable.
\end{prop}
\begin{proof}
\begin{multline*}
f \in \continuous'' (\mu \circ \mu^{- 1} , \nu \circ \nu^{- 1})
\Leftrightarrow \\ f \circ \mu \circ \mu^{- 1} \circ f^{- 1}
\sqsubseteq \nu \circ \nu^{- 1} \Rightarrow \text{(reflexivity of
$\mu$)} \Rightarrow \\ f \circ \mu \circ f^{- 1} \sqsubseteq \nu
\circ \nu^{- 1} \Leftrightarrow f \circ \mu^{- 1} \circ f^{- 1}
\sqsubseteq \nu \circ \nu^{- 1} \Rightarrow \\ \langle f \circ \mu^{- 1}
\circ f^{- 1} \rangle^{\ast} X \sqsubseteq \supfun{\nu}^{\ast}
\langle \nu^{- 1} \rangle^{\ast} X \Rightarrow \\ \Cor \left\langle f
\circ \mu^{- 1} \circ f^{- 1} \right\rangle^{\ast} X \sqsubseteq
\Cor \supfun{\nu}^{\ast} \langle \nu^{- 1} \rangle^{\ast} X
\Leftrightarrow \\ \langle f \circ \mu^{- 1} \circ f^{- 1} \rangle^{\ast}
X \sqsubseteq \Cor \supfun{\nu}^{\ast} \langle \nu^{- 1}
\rangle^{\ast} X \Rightarrow \\ \text{($T_1$-separability)} \Rightarrow \\ \langle
f \circ \mu^{- 1} \circ f^{- 1} \rangle^{\ast} X \sqsubseteq \langle
\nu^{- 1} \rangle^{\ast} X$ for any typed set $X$ on $\Ob \nu.
\end{multline*}
Thus
\begin{multline*}
f \in \continuous'' (\mu \circ \mu^{- 1} , \nu \circ \nu^{- 1})
\Rightarrow f \circ \mu^{- 1} \circ f^{- 1} \sqsubseteq \nu^{- 1}
\Leftrightarrow \\ f \circ \mu \circ f^{- 1} \sqsubseteq \nu
\Leftrightarrow f \in \continuous'' (\mu, \nu).
\end{multline*}
\end{proof}
\begin{thm}
$f \in \continuous (\mu \circ \mu^{- 1} , \nu \circ \nu^{- 1})
\Leftrightarrow f \in \continuous (\mu, \nu)$ for complete endofuncoids
$\mu$, $\nu$ and principal monovalued and entirely defined funcoid $f
\in \mathsf{FCD} (\Ob \mu, \Ob \nu)$, provided that
$\mu$ is reflexive, and $\nu$ is $T_1$-separable.
\end{thm}
\begin{proof}
Two above propositions and theorem~\ref{cont-eq}.
\end{proof}
\section{\index{continuity!of restricted morphism}Continuity of a restricted
morphism}
Consider some partially ordered semigroup. (For example it can be
the semigroup of funcoids or semigroup of reloids on some set regarding
the composition.) Consider also some lattice (\emph{lattice of objects}).
(For example take the lattice of set theoretic filters.)
We will map every object $A$ to so called \emph{restricted identity}
element $I_{A}$ of the semigroup (for example restricted identity
funcoid or restricted identity reloid). For identity elements we will
require
\begin{enumerate}
\item $I_{A}\circ I_{B}=I_{A\sqcap B}$;
\item $f\circ I_{A}\sqsubseteq f$; $I_{A}\circ f\sqsubseteq f$.
\end{enumerate}
In the case when our semigroup is ``dagger'' (that is is a dagger
semicategory) we will require also $(I_{A})^{\dagger}=I_{A}$.
We can define restricting an element $f$ of our semigroup to an object
$A$ by the formula $f|_{A}=f\circ I_{A}$.
\index{restricting!rectangular}We can define \emph{rectangular restricting}
an element $f$ of our semigroup to objects $A$ and $B$ as $I_{B}\circ f\circ I_{A}$.
Optionally we can define direct product $A\times B$ of two objects
by the formula (true for funcoids and for reloids):
\[
f\sqcap(A\times B)=I_{B}\circ f\circ I_{A}.
\]
\index{restricting!square}\emph{Square restricting} of an element
$f$ to an object $A$ is a special case of rectangular restricting
and is defined by the formula $I_{A}\circ f\circ I_{A}$ (or by the
formula $f\sqcap(A\times A)$).
\begin{thm}
\label{rect-cont}For every elements~$f$, $\mu$, $\nu$ of our semigroup
and an object $A$
\begin{enumerate}
\item \label{contrestr-C}$f\in\continuous(\mu,\nu)\Rightarrow f|_{A}\in\continuous(I_{A}\circ\mu\circ I_{A},\nu)$;
\item \label{contrestr-Ci}$f\in\continuous'(\mu,\nu)\Rightarrow f|_{A}\in\continuous'(I_{A}\circ\mu\circ I_{A},\nu)$;
\item \label{contrestr-Cii}$f\in\continuous''(\mu,\nu)\Rightarrow f|_{A}\in\continuous''(I_{A}\circ\mu\circ I_{A},\nu)$.
\end{enumerate}
(Two last items are true for the case when our semigroup is dagger.)
\end{thm}
\begin{proof}
~
\begin{widedisorder}
\item [{\ref{contrestr-C}}] ~
\begin{align*}
f|_{A}\in\continuous(I_{A}\circ\mu\circ I_{A},\nu) & \Leftrightarrow\\
f|_{A}\circ I_{A}\circ\mu\circ I_{A}\sqsubseteq\nu\circ f|_{A} & \Leftrightarrow\\
f\circ I_{A}\circ I_{A}\circ\mu\circ I_{A}\sqsubseteq\nu\circ f|_{A} & \Leftrightarrow\\
f\circ I_{A}\circ\mu\circ I_{A}\sqsubseteq\nu\circ f\circ I_{A} & \Leftarrow\\
f\circ I_{A}\circ\mu\sqsubseteq\nu\circ f & \Leftarrow\\
f\circ\mu\sqsubseteq\nu\circ f & \Leftrightarrow\\
f\in\continuous(\mu,\nu).
\end{align*}
\item [{\ref{contrestr-Ci}}] ~
\begin{align*}
f|_{A}\in\continuous'(I_{A}\circ\mu\circ I_{A},\nu) & \Leftrightarrow\\
I_{A}\circ\mu\circ I_{A}\sqsubseteq(f|_{A})^{\dagger}\circ\nu\circ f|_{A} & \Leftarrow\\
I_{A}\circ\mu\circ I_{A}\sqsubseteq(f\circ I_{A})^{\dagger}\circ\nu\circ f\circ I_{A} & \Leftrightarrow\\
I_{A}\circ\mu\circ I_{A}\sqsubseteq I_{A}\circ f^{\dagger}\circ\nu\circ f\circ I_{A} & \Leftarrow\\
\mu\sqsubseteq f^{\dagger}\circ\nu\circ f & \Leftrightarrow\\
f\in\continuous'(\mu,\nu).
\end{align*}
\item [{\ref{contrestr-Cii}}] ~
\begin{align*}
f|_{A}\in\continuous''(I_{A}\circ\mu\circ I_{A},\nu) & \Leftrightarrow\\
f|_{A}\circ I_{A}\circ\mu\circ I_{A}\circ(f|_{A})^{\dagger}\sqsubseteq\nu & \Leftrightarrow\\
f\circ I_{A}\circ I_{A}\circ\mu\circ I_{A}\circ I_{A}\circ f^{\dagger}\sqsubseteq\nu & \Leftrightarrow\\
f\circ I_{A}\circ\mu\circ I_{A}\circ f^{\dagger}\sqsubseteq\nu & \Leftarrow\\
f\circ\mu\circ f^{\dagger}\sqsubseteq\nu & \Leftrightarrow\\
f\in\continuous''(\mu,\nu).
\end{align*}
\end{widedisorder}
\end{proof}
\section{Anticontinuous morphisms}
Let $\mu$ and $\nu$ be endomorphisms of some partially ordered semicategory.
\emph{Anticontinuous} functions can be defined as these morphisms $f$ of this
semicategory which conform to the following formula:
\[
f\in\continuous_{\ast}(\mu,\nu)\Leftrightarrow f\in\Hom(\Ob\mu,\Ob\nu)\land f\circ\mu\sqsupseteq\nu\circ f.
\]
If the semicategory is a partially ordered dagger semicategory then
\emph{anticontinuity} also can be defined in two other ways:
\begin{gather*}
f\in\continuous_{\ast}'(\mu,\nu)\Leftrightarrow f\in\Hom(\Ob\mu,\Ob\nu)\land\mu\sqsupseteq f^{\dagger}\circ\nu\circ f;\\
f\in\continuous_{\ast}''(\mu,\nu)\Leftrightarrow f\in\Hom(\Ob\mu,\Ob\nu)\land f\circ\mu\circ f^{\dagger}\sqsupseteq\nu.
\end{gather*}
Anticontinuity is the order dual of continuity.
\begin{thm}
For partially ordered dagger categories:
\begin{enumerate}
\item $f\in\continuous_{\ast}(\mu,\nu)\Leftrightarrow f^{\dagger}\in\continuous(\nu^{\dagger},\mu^{\dagger})$;
\item $f\in\continuous_{\ast}'(\mu,\nu)\Leftrightarrow f^{\dagger}\in\continuous''(\nu^{\dagger},\mu^{\dagger})$;
\item $f\in\continuous_{\ast}''(\mu,\nu)\Leftrightarrow f^{\dagger}\in\continuous'(\nu^{\dagger},\mu^{\dagger})$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{enumerate}
\item $f\in\continuous_{\ast}(f,g)\Leftrightarrow
f\circ\mu\sqsupseteq\nu\circ f\Leftrightarrow
\mu^{\dagger}\circ f^{\dagger}\sqsupseteq f^{\dagger}\circ\nu^{\dagger}\Leftrightarrow
f^{\dagger}\in\continuous(\nu^{\dagger},\mu^{\dagger})$.
\item $f\in\continuous_{\ast}'(\mu,\nu)\Leftrightarrow
\mu\sqsupseteq f^{\dagger}\circ\nu\circ f\Leftrightarrow
f^{\dagger}\circ\nu^{\dagger}\circ f\sqsubseteq\mu^{\dagger}\Leftrightarrow
f^{\dagger}\in\continuous''(\nu^{\dagger},\mu^{\dagger})$.
\item By duality.
\end{enumerate}
\end{proof}
\begin{defn}
\index{open map}An \emph{open map} from a topological space to a
topological space is a function which maps open sets into open sets.
\end{defn}
\begin{thm}
For topological spaces considered as complete funcoids,
a principal anticontinuous morphism is the same as open map.
\end{thm}
\begin{proof}
Because $f$,~$\mu$,~$\nu$ are complete funcoids, we have
\[
f\in\continuous_{\ast}(\mu,\nu)\Leftrightarrow
f\circ\mu\sqsupseteq\nu\circ f\Leftrightarrow
\Compl(f\circ\mu)\sqsupseteq\Compl(\nu\circ f).
\]
Equivalently transforming further, we get
\[
\forall x\in\Ob\mu:\supfun f\rsupfun{\mu}@\{x\}\sqsupseteq\supfun{\nu}\rsupfun
f@\{x\};
\]
\[
\forall x\in\Ob\mu,V\in\rsupfun{\mu}\{x\}:\rsupfun
fV\sqsupseteq\supfun{\nu}\rsupfun f@\{x\},
\]
what is the criterion of~$f$ being an open map.
\end{proof}