-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheuclidean.tm
88 lines (63 loc) · 3.15 KB
/
euclidean.tm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
<TeXmacs|2.1.1>
<style|<tuple|generic|AGT>>
<\body>
I will call <with|font-shape|italic|embedding> a functor from category
<math|C> to category <math|D> such that:
<\itemize>
<item>
</itemize>
Note that different authors use the word \Pembedding\Q in different
meanings.
I will prove theorems of the form:
I will denote <math|OSA> the category of ordered semicategory actions.
<math|\<tau\>> is a bijection from objects of a category <math|\<mu\>> to
<math|OSA>. <math|\<tau\> a\<cong\>\<tau\> b\<Leftrightarrow\>a\<cong\>b>.
<\theorem>
Any concretizable category is isomorphic to a subcategory of <math|OSA>.
</theorem>
<\proof>
It follows from the fact that every category is isomorphic to a
subcategory of <math|<with|font-series|bold|Set>>.
https://math.stackexchange.com/a/3317571/4876
</proof>
We can make the above theorem stronger by requiring the order to match the
order on the original category <math|\<mu\>>, but that's an obvious
consequence.
We can have more than one representation of a (concrete) category as a
subcategory of <math|OSA>. Consider for example
<math|<around*|(|<around*|{|a|}>,<around*|{|id|}>, id|)>> and
<math|<around*|(|<around*|{|a,b|}>,<around*|{|id|}>, id|)>> representing
the same category, but being different (non-isomorphic) OSAs. They are
isomorphic as categories but not isomorphic as OSAs.
\V
Restoring an Euclidean up to a scaling factor space from the set of all its
motions (that is in turn restored from the function from sets of sets to
their motions).
Let <math|S> be the set of all motions of an Euclidean space <math|E>.
Define <math|f\<less\>g> iff <math|g=f<rsup|n>> for a natural <math|n>.
Counter-example: Take 1-dimensional Euclidean space, exchange functions for
<math|n<sqrt|2>> and <math|n<sqrt|3>>. They produce an isomorphic element
of the ordered semigroup with action:
The first motion is <math|x\<mapsto\>a+x>.
The second motion is <math|\<varphi\><around*|(|a|)>=x\<mapsto\><choice|<tformat|<table|<row|<cell|a<frac|<sqrt|3>|<sqrt|2>>+x
for \<exists\>n,m\<in\>\<Zeta\>:a=<frac|n|m><sqrt|2>>>|<row|<cell|a<frac|<sqrt|2>|<sqrt|3>>+x
for \<exists\>n,m\<in\>\<Zeta\>:a=<frac|n|m><sqrt|3>>>|<row|<cell|a+x
otherwise>>>>>>
??These two are not distinguishable as ordered semigroup actions, because
they are both bijections.
??Not true: Take <math|a<rsub|1>=<sqrt|2>+<sqrt|3>>. Then
<math|\<varphi\><around*|(|a<rsub|1>|)>
x=<sqrt|2>+<sqrt|3>+x=\<varphi\><around*|(|<sqrt|3>|)><around*|(|\<varphi\><around*|(|<sqrt|2>|)>x|)>>.
So?? we need to replace the function <math|a\<mapsto\>\<varphi\><around*|(|a|)>>
by <math|<around*|(|a,<with|font|cal|X>|)>\<mapsto\><around*|(|\<varphi\><around*|(|a|)>,<supfun|\<mu\>>\<cal-X\>|)>>.
Maybe, every mathematical structure can be represented as ordered
semicategory actions?
Infinitely small motion: replace an arbitary motion <math|\<varphi\>> by
<math|<big|sqcap><rsub|m\<in\>\<bbb-N\>><big|cup><rsub|n\<gtr\>m>\<varphi\><rsup|-n>>.
??Counterexample: meaningless for mirror symmetry.
</body>
<\initial>
<\collection>
<associate|page-medium|paper>
</collection>
</initial>