forked from boglab/talesf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrontend.c
236 lines (184 loc) · 6.73 KB
/
frontend.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#include <getopt.h>
#include <stdio.h>
#include <omp.h>
#include "talesf.h"
#include <bcutils/Hashmap.h>
#include <bcutils/Array.h>
#include <bcutils/bcutils.h>
#define BIGGEST_RVD_SCORE_EVER 100
// Print usage statement
void print_usage(FILE *out_stream, char *prog_name)
{
fprintf( out_stream, "\nUsage: %s [options] sequence_file_path \"rvdseq\"\n"
" Options:\n"
" -c|--cupstream sets the allowed upstream bases; 0 for T only, 1 for C only, 2 for either\n"
" -f|--forwardonly only search the forward strand of the sequence\n"
" -h|--help print this help message and exit\n"
" -n|--numprocs the number of processors to use; default is 1\n"
" -o|--outfile template filename to which output will be written; both a tab-delimited file "
" and gff3 file will be produced \n"
" -w|--weight user-defined weight; default is 0.9\n"
" -x|--cutoffmult multiple of best score at which potential sites will be\n"
" filtered; default is 3.0\n\n", prog_name );
}
int main(int argc, char **argv)
{
char *prog_name;
char *seq_filepath;
char *rvd_string;
char *log_filepath;
int forward_only;
int num_procs;
char out_filepath[256];
int c_upstream;
double weight;
double cutoff;
// Set Defaults
forward_only = 0;
num_procs = 1;
weight = 0.9;
cutoff = 3.0;
log_filepath = "NA";
c_upstream = 0;
prog_name = argv[0];
int opt, opt_index;
const char *opt_str = "c:gfhn:o:s:w:x:";
const struct option otsf_options[] =
{
{ "forwardonly", no_argument, NULL, 'f' },
{ "help", no_argument, NULL, 'h' },
{ "numprocs", required_argument, NULL, 'n' },
{ "outfile", required_argument, NULL, 'o' },
{ "weight", required_argument, NULL, 'w' },
{ "cutoffmult", required_argument, NULL, 'x' },
{ "cupstream", required_argument, NULL, 'c' },
{ NULL, no_argument, NULL, 0 },
};
for( opt = getopt_long(argc, argv + 0, opt_str, otsf_options, &opt_index);
opt != -1;
opt = getopt_long(argc, argv + 0, opt_str, otsf_options, &opt_index) )
{
switch(opt)
{
case 'f':
forward_only = 1;
break;
case 'c':
if( sscanf(optarg, "%d", &c_upstream) != 1 )
{
fprintf(stderr, "Error: unable to convert cupstream '%s' to an integer\n", optarg);
return 1;
}
if ( c_upstream != 0 && c_upstream != 1 && c_upstream != 2) {
fprintf(stderr, "Error: cupstream must be 0, 1, or 2\n");
return 1;
}
break;
case 'h':
print_usage(stdout, prog_name);
return 0;
case 'n':
if( sscanf(optarg, "%d", &num_procs) != 1 )
{
fprintf(stderr, "Error: unable to convert numprocs '%s' to an integer\n", optarg);
return 1;
}
if( num_procs > omp_get_num_procs())
{
fprintf(stderr, "Error: numprocs was %d but only %d are available\n", num_procs, omp_get_num_procs());
return 1;
}
break;
case 'o':
strcpy(out_filepath, optarg);
break;
case 'w':
if( sscanf(optarg, "%lf", &weight) != 1 )
{
fprintf(stderr, "Error: unable to convert weight '%s' to a double\n", optarg);
return 1;
}
break;
case 'x':
if( sscanf(optarg, "%lf", &cutoff) != 1 )
{
fprintf(stderr, "Error: unable to convert cutoff multiple '%s' to a double\n", optarg);
return 1;
}
break;
}
}
// Parse arguments
if(argc - optind != 2)
{
fputs("Error: must provide sequence (file) and RVD sequence (string)\n", stderr);
print_usage(stderr, prog_name);
return 1;
}
seq_filepath = argv[optind];
rvd_string = argv[optind + 1];
Hashmap *talesf_kwargs = hashmap_new(32);
Array *rvd_array = rvd_string_to_array(rvd_string);
// Get RVD/bp matching scores
Hashmap *diresidue_probabilities = get_diresidue_probabilities(rvd_array, weight);
Hashmap *diresidue_scores = convert_probabilities_to_scores(diresidue_probabilities);
hashmap_delete(diresidue_probabilities, NULL);
// Convert hashmap to int map
hashmap_add(diresidue_scores, "XX", double_array(0, 0, 0, 0, BIGGEST_RVD_SCORE_EVER));
double **scoring_matrix = calloc(hashmap_size(diresidue_scores), sizeof(double*));
Hashmap *rvd_to_int = hashmap_new(hashmap_size(diresidue_scores));
unsigned int *rvd_ints = calloc(hashmap_size(diresidue_scores), sizeof(unsigned int));
char **diresidues = hashmap_keys(diresidue_scores);
for (unsigned int i = 0; i < hashmap_size(diresidue_scores); i++) {
rvd_ints[i] = i;
hashmap_add(rvd_to_int, diresidues[i], rvd_ints + i);
scoring_matrix[i] = hashmap_get(diresidue_scores, diresidues[i]);
scoring_matrix[i][4] = BIGGEST_RVD_SCORE_EVER;
}
unsigned int *rvd_seq = (unsigned int*) calloc(array_size(rvd_array), sizeof(unsigned int));
for (unsigned int i = 0; i < array_size(rvd_array); i++) {
rvd_seq[i] = *(unsigned int *)(hashmap_get(rvd_to_int, array_get(rvd_array, i)));
}
unsigned int rvd_seq_len = array_size(rvd_array);
double best_score = get_best_score(rvd_array, diresidue_scores);
int scoring_matrix_length = hashmap_size(diresidue_scores);
hashmap_add(talesf_kwargs, "seq_filename", seq_filepath);
hashmap_add(talesf_kwargs, "rvd_seq", rvd_seq);
hashmap_add(talesf_kwargs, "rvd_seq_len", &rvd_seq_len);
hashmap_add(talesf_kwargs, "rvd_string", rvd_string);
hashmap_add(talesf_kwargs, "best_score", &best_score);
hashmap_add(talesf_kwargs, "scoring_matrix", scoring_matrix);
hashmap_add(talesf_kwargs, "scoring_matrix_length", &scoring_matrix_length);
hashmap_add(talesf_kwargs, "output_filepath", out_filepath);
hashmap_add(talesf_kwargs, "log_filepath", log_filepath);
hashmap_add(talesf_kwargs, "weight", &weight);
hashmap_add(talesf_kwargs, "cutoff", &cutoff);
hashmap_add(talesf_kwargs, "c_upstream", &c_upstream);
hashmap_add(talesf_kwargs, "num_procs", &num_procs);
hashmap_add(talesf_kwargs, "organism_name", "");
hashmap_add(talesf_kwargs, "forward_only", &forward_only);
int task_result = run_talesf_task(talesf_kwargs);
hashmap_delete(talesf_kwargs, NULL);
if (rvd_seq) {
free(rvd_seq);
}
if (scoring_matrix) {
free(scoring_matrix);
}
if (rvd_to_int) {
hashmap_delete(rvd_to_int, NULL);
}
if (rvd_ints) {
free(rvd_ints);
}
if (diresidues) {
free(diresidues);
}
if (rvd_array) {
array_delete(rvd_array, free);
}
if (diresidue_scores) {
hashmap_delete(diresidue_scores, free);
}
return task_result;
}