-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathmodel.py
85 lines (68 loc) · 3.52 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from keras.models import Model
from keras.layers import Input, LSTM, Dense, Dropout
from keras import optimizers, metrics, backend as K
# For use with truncated metrics,
# take maxlen from the validation set.
# Hacky and hard-coded for now.
VAL_MAXLEN = 16
def truncated_acc(y_true, y_pred):
y_true = y_true[:, :VAL_MAXLEN, :]
y_pred = y_pred[:, :VAL_MAXLEN, :]
acc = metrics.categorical_accuracy(y_true, y_pred)
return K.mean(acc, axis=-1)
def truncated_loss(y_true, y_pred):
y_true = y_true[:, :VAL_MAXLEN, :]
y_pred = y_pred[:, :VAL_MAXLEN, :]
loss = K.categorical_crossentropy(
target=y_true, output=y_pred, from_logits=False)
return K.mean(loss, axis=-1)
def seq2seq(hidden_size, nb_input_chars, nb_target_chars):
"""Adapted from:
https://github.com/keras-team/keras/blob/master/examples/lstm_seq2seq.py
"""
# Define the main model consisting of encoder and decoder.
encoder_inputs = Input(shape=(None, nb_input_chars),
name='encoder_data')
encoder_lstm = LSTM(hidden_size, recurrent_dropout=0.2,
return_sequences=True, return_state=False,
name='encoder_lstm_1')
encoder_outputs = encoder_lstm(encoder_inputs)
encoder_lstm = LSTM(hidden_size, recurrent_dropout=0.2,
return_sequences=False, return_state=True,
name='encoder_lstm_2')
encoder_outputs, state_h, state_c = encoder_lstm(encoder_outputs)
# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None, nb_target_chars),
name='decoder_data')
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the return
# states in the training model, but we will use them in inference.
decoder_lstm = LSTM(hidden_size, dropout=0.2, return_sequences=True,
return_state=True, name='decoder_lstm')
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
initial_state=encoder_states)
decoder_softmax = Dense(nb_target_chars, activation='softmax',
name='decoder_softmax')
decoder_outputs = decoder_softmax(decoder_outputs)
# The main model will turn `encoder_input_data` & `decoder_input_data`
# into `decoder_target_data`
model = Model(inputs=[encoder_inputs, decoder_inputs],
outputs=decoder_outputs)
adam = optimizers.Adam(lr=0.001, decay=0.0)
model.compile(optimizer=adam, loss='categorical_crossentropy',
metrics=['accuracy', truncated_acc, truncated_loss])
# Define the encoder model separately.
encoder_model = Model(inputs=encoder_inputs, outputs=encoder_states)
# Define the decoder model separately.
decoder_state_input_h = Input(shape=(hidden_size,))
decoder_state_input_c = Input(shape=(hidden_size,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(
decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_softmax(decoder_outputs)
decoder_model = Model(inputs=[decoder_inputs] + decoder_states_inputs,
outputs=[decoder_outputs] + decoder_states)
return model, encoder_model, decoder_model