-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.R
66 lines (49 loc) · 2.22 KB
/
model.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
library("OpenImageR")
setwd(dirname(rstudioapi::getSourceEditorContext()$path))
utils <- load("utilsFisher.RData")
face_recognition <- function(image, objs=NULL){
data = matrix(0, 1, 200*180*3)
Im = readImage(image)
red = as.vector(Im[,,1])
green = as.vector(Im[,,2])
blue = as.vector(Im[,,3])
data[1, ] = t(c(red, green, blue))
tes = scale(data, center=attr(train.scaled,"scaled:center"),
scale=attr(train.scaled,"scaled:scale"))
new_train = t(t(Eigenfaces)%*%t(tes))
test.new_fisher = as.data.frame(new_train%*%fish$eigenvector_fisher)
res = knn(train.fisher, test.new_fisher, train.labels, "manhattan", 1)
res = as.numeric(res)
return(res)
}
##############################################################################
# EXAMPLE To use the function: #
# This file (model.R) and (utilsFisher.RData) must be in the same directory #
# #
# After loading (utilsFisher.RData). Go to the folder with all images #
# #
# PARAMETERS: #
# image is the image to recognize: example("13DT.jpg") of dim 200x180x3 #
# #
# this_dir is the directory with the images to test. Go there and list files #
##############################################################################
this_dir <- "..."
setwd(this_dir)
files <- list.files()
try = 45
fc <- face_recognition(files[try])
fc
files[try]
#############################################################################
# To test more than only one image at same time #
# Warning all files inside the dir must be the images to test .jpg #
#############################################################################
files <- list.files()
classification = rep(1,length(files))
j=1
for (i in 1:length(classification)){
print(files[i])
classification[j] <- face_recognition(files[i])
j=j+1
}
classification