forked from vjcitn/raggedchk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
243 lines (188 loc) · 5.99 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
---
title: "RaggedExperiment Use Case"
output: github_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
out.width = "100%",
echo = TRUE,
cache = TRUE,
fig.path = "man/figures/README-"
)
```
This repository provides reproducible examples and tables shown in the
"RaggedExperiment: the missing link between genomic ranges and matrices in
Bioconductor" manuscript. Below is an example use case provided by
[Vincent J. Carey](mailto:stvjc@channing.harvard.edu). See the Articles section
to see other use cases and table code.
# Installation
```{r,eval=FALSE}
if (!requireNamespace("RaggedExperiment", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("RaggedExperiment")
```
# Package Load
```{r getpkgs,include=TRUE,results="hide",message=FALSE,warning=FALSE}
library(curatedTCGAData)
library(TCGAutils)
library(BiocParallel)
library(survival)
library(RaggedExperiment)
```
# Enumerate mutations by symbol in BRCA, couple to overall survival
```{r}
suppressMessages({
bmut <- curatedTCGAData("BRCA", "Mutation", dry.run=FALSE, version="2.0.1")
})
sampleTables(bmut)
```
## Filter only for primary solid tumors (code 01)
```{r}
bmut.srv <- TCGAprimaryTumors(bmut)
sampleTables(bmut.srv)
```
## Extract RaggedExperiment from MultiAssayExperiment
```{r}
rgmut <- bmut.srv[["BRCA_Mutation-20160128"]]
```
## Check for replicates
```{r}
anyReplicated(bmut.srv)
## Obtain names of replicate samples by colData rowname
replicates <- Filter(length,
lapply(
replicated(bmut.srv)[["BRCA_Mutation-20160128"]],
function(x) {
colnames(rgmut)[x]
}
)
)
```
## Total number of patients with replicates
```{r}
sum(sapply(replicated(bmut.srv), any))
## OR
length(replicates)
```
## Remove replicate observations
```{r}
bmut.surv <- bmut.srv[,
list("BRCA_Mutation-20160128" =
!colnames(rgmut) %in% unlist(sapply(replicates, tail, -1)))
]
stopifnot(!anyReplicated(bmut.surv))
```
## See mutation classifications
```{r}
ragex <- bmut.surv[["BRCA_Mutation-20160128"]]
table(mcols(ragex)$Variant_Classification)
```
## Select only non-silent mutations
```{r}
## mcolsFilter (?)
ragex <- ragex[mcols(ragex)$Variant_Classification != "Silent", ]
table(mcols(ragex)$Variant_Classification)
bmut[["BRCA_Mutation-20160128"]] <- ragex
```
## Set up survival time
```{r}
colData(bmut.surv) <- colData(bmut)[!is.na(bmut$OS.Time), ]
osurv <- Surv(bmut.surv$OS.Time/365.25, bmut.surv$OS.event)
```
## Obtain Hugo_Symbols for each sample
```{r}
system.time({
mutsyms <- as(
lapply(
as(bmut.surv[["BRCA_Mutation-20160128"]], "GRangesList"),
function(x) x$Hugo_Symbol
),
"CharacterList"
)
})
mutsyms
```
## Sample mutations tally
```{r}
system.time({
print(table(sapply(mutsyms, function(x) sum(duplicated(x)))))
})
```
## Plot overall survival curve
```{r lksurv}
plot(survfit(osurv~1), main = "Overall BRCA Survival", xlab = "Years")
```
## Compare to GDC Data Portal plot
The display, based on 793 observations with non-missing
TCGA OS.Time, is consistent with the display at the [GDC Data Portal](https://portal.gdc.cancer.gov/exploration?filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22content%22%3A%7B%22field%22%3A%22cases.diagnoses.tissue_or_organ_of_origin%22%2C%22value%22%3A%5B%22axillary%20tail%20of%20breast%22%2C%22breast%2C%20nos%22%2C%22central%20portion%20of%20breast%22%2C%22lower-inner%20quadrant%20of%20breast%22%2C%22lower-outer%20quadrant%20of%20breast%22%2C%22nipple%22%2C%22overlapping%20lesion%20of%20breast%22%2C%22upper-inner%20quadrant%20of%20breast%22%2C%22upper-outer%20quadrant%20of%20breast%22%5D%7D%2C%22op%22%3A%22in%22%7D%2C%7B%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22breast%22%5D%7D%2C%22op%22%3A%22in%22%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%5D%7D&searchTableTab=genes), based on 1077 cases.
# Obtain gene-stratified survival
```{r dogs}
gstrat <- function(sym="TTN", mutlist, survdat) {
stopifnot(inherits(survdat, "Surv"))
stopifnot(length(survdat) == length(mutlist))
hassym <- unlist(list(sym) %in% mutlist)
plot(survfit(survdat~hassym), main=sym, lty=1:2, xlab="Years")
}
gstrat("TTN", mutsyms, osurv)
gstrat("TP53", mutsyms, osurv)
```
## Frequencies
```{r dofr}
commut <- head(sort(table(unlist(mutsyms)), decreasing = TRUE), 30)
commut
```
## Log mutation count per tumor
```{r lkhist}
hist(log(sapply(mutsyms,length)), main="Log mutation count per tumor")
```
# Combinations of mutations
```{r lkco}
hasmut <- function(sym="TP53", mutlist) {
sapply(mutlist, function(x) sym %in% x)
}
table(hasmut("TP53", mutsyms), hasmut("PIK3CA", mutsyms))
```
## Assemble pairs
```{r lkmpairs}
common_pairs <- combn(names(commut),2)
common_pairs[,1:4]
```
## Greedy search for deleterious pairs
```{r lkpairs}
indicate_pair <- function(sym1, sym2, mutlist)
hasmut(sym1, mutlist) & hasmut(sym2, mutlist)
chk <- apply(common_pairs,2,function(z) indicate_pair(z[1], z[2], mutsyms))
chkp.inds <- which(apply(chk,2,sum)>20) # disallow very rare combos
dim(chk)
dim(chk[,chkp.inds])
chisqs <- apply(chk[,chkp.inds],2,function(z)survdiff(osurv~z)$chisq)
hist(chisqs)
cpr <- common_pairs[,chkp.inds][, which(chisqs>5)]
plot(survfit(osurv~chk[,chkp.inds[which(chisqs>5)]]), lty=1:2, main=paste(cpr, collapse=" & " ))
```
# Using domain classification of mutations
```{r lkdom}
dom <- assay(bmut.surv[[1L]], "domain_WU")
length(grep("Znf", na.omit(as.character(dom)))) # frequently noted
register(MulticoreParam(parallel::detectCores() - 1L))
system.time(
mutdoms <- bplapply(
seq_len(ncol(dom)),
function(x) as.character(na.omit(dom[,x]))
)
)
```
## Isolate individuals with mutations
### Znf domain
```{r noz}
noz <- sapply(mutdoms, function(x) length(grep("Znf", x))==0)
table(noz)
survdiff(osurv~noz)
```
### SH3
```{r nosh}
nosh3 <- sapply(mutdoms, function(x) length(grep("SH3", x))==0)
survdiff(osurv~nosh3)
```