forked from brain-life/encode
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_connectome_data_comparison.m
451 lines (372 loc) · 16.8 KB
/
demo_connectome_data_comparison.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
function [fh, fe] = demo_connectome_data_comparison()
% This demo characterizes connectomes obtained with different data sets and
% tracking methods.
%
% It compares two fundamental properties of a connectome density and error
% in predicting the diffusion signal. It shows how these conenctome
% properties depend from data type (spatial resolution and directional
% resolution) and tractogrpahy method (probabilistic, deterministic,
% constrained spehreical deconvolution or tensor based).
%
% Below, we load previously computed results and show the
% relationship between the root-mean-squared error of a connectome in
% predicting the demeaned diffusion-weighted signal and the number of
% non-zero weighted connectome fascicles (connectome density).
%
% The demo introduces uses of some fundamental operations provided by the
% toolbox and accessed via feGet.m
%
% feGet.m is a hub function that allows computing connectome error and
% density among other operations.
%
% The plots geenrated by this demo reproduce partially results presented in
% Figure 3 of "Multidimensional encoding of brain connectomes" by Cesar F.
% Caiafa and Franco Pestilli, submitted (2016).
%
% Copyright (2016), Franco Pestilli (Indiana Univ.) - Cesar F. Caiafa
% (CONICET) email: frakkopesto@gmail.com and ccaiafa@gmail.com
%% (0) Check matlab, data dependencies and path settings.
if ~exist('vistaRootPath.m','file');
disp('Vistasoft package either not installed or not on matlab path.')
error('Please, download it from https://github.com/vistalab/vistasoft');
end
if ~exist('feDemoDataPath.m','file');
disp('ERROR: demo dataset either not installed or not on matlab path.')
error('Please, download it from http://purl.dlib.indiana.edu/iusw/data/2022/20995/Demo_Data_for_Multidimensional_Encoding_of_Brain_Connectomes.tar.gz')
end
% s = what('demo_datasets');
% if isempty(s)
% disp('ERROR: demo dataset either not installed or not on matlab path.')
% error('Please, download it from http://purl.dlib.indiana.edu/iusw/data/2022/20995/Demo_Data_for_Multidimensional_Encoding_of_Brain_Connectomes.tar.gz')
% end
%% (1) Figure 3 from Multidimensional encoding of brain connectomes
% Cesar F. Caiafa and Franco Pestilli, submitted.
%
% Below we will first load part of the data used in Figure 3 of the
% original publication (Caiafa and Pestilli, submitted)
%
% After that we will add one additional point to the plot. Using data from
% a different subject.
%
% This plots shows in a compact form two fundamental properties of a brain
% connectome:
% - the error of the conenctome in predicting the measured diffusion
% signal, the root-mean-squared error.
% - the density of a connectome. More specifcially the number of fibers
% supported by the measured diffusion-weighted data in the provided
% tractography solution.
%Generate_Fig3_paper_Caiafa_Pestilli('original')
%savefig('Fig_3a_paper.fig')
openfig('Fig_3a_paper.fig')
% We brighten the symbols to use them as background.
%Generate_Fig3_paper_Caiafa_Pestilli('gray')
%savefig('Fig_3a_paper_gray.fig')
openfig('Fig_3a_paper_gray.fig')
%% (2) Read HCP3T subject connectome obtained by using Probabilistic tractography
%
% We load data not yet present on the plot.
%
disp('loading fe_structures for 105115 subject in HCP3T dataset (PROB) ...')
feFileName = fullfile(feDemoDataPath('HCP3T','sub-105115','fe_structures'), ...
'fe_structure_105115_STC_run01_SD_PROB_lmax10_connNUM01.mat');
%feFileName = fullfile(s.path,'HCP3T','sub-105115','fe_structures', 'fe_structure_105115_STC_run01_SD_PROB_lmax10_connNUM01.mat');
load(feFileName)
% Here we extract two measures we are interested in:
% (1) The root-mean-squared-error RMSE of the connectome in predicting
% the measured demeaned diffusion-weighted signal.
% (2) The number of non-zero weighted fibers. These are fibers for which
% LiFE assiged a weight larger than zero.
%
% First we pick a data set.
sbj.alg = 'PROB';
sbj.name = 'HCP3T';
% We use the core function feGet.m to extract the RMSE and the B0 (MRI
% measureemnts without the diffusion-weighted gradient applied).
%
% We compute the mean RMSE across the whole white matter volume.
sbj.rmse = nanmean(feGet(fe,'voxrmses0norm'));
% We find the positive weights and disregard the NaNs. THen compute the
% number of postive weights (number of fascicles with non-zero weight, alse
% referred to as conenctome density).
sbj.nnz = feGet(fe,'connectome density');
% Finally we add the new data point to the plot we have generted. This si
% doen by plotting connectome density on the ordinate and RMSE on the
% abscissa.
Add_new_data_point(sbj,'cold',2)
%
% Below we show additional examples of data points added to the principla
% plot in the Figure. To do so, we repeate several operations shown abouve
% (using feGet.m). But we reduce clutter by packaging the operations into a
% helper function saved at the bottom of this file that can be conveneinty
% called multiple times as we show examples of multiple data points added
% to the plot.
%
%% (3) Read data from the chosen subjects.
%
% 3.1 These results were obtained by using tensor-based deterministic
% tractography and the HCP3T data set.
%
% In practice we repeate the same operations shown about (using feGet.m).
% To reduce clutter we have packaged the operations into a helper function
% saved at the bottom of this file that can be conveneinty called multiple
% times as we show examples of multiple data points added to the plot.
%
disp('loading fe_structures for 105115 subject in HCP3T dataset (DET) ...')
feFileName = fullfile(feDemoDataPath('HCP3T','sub-105115','fe_structures'), ...
'fe_structure_105115_STC_run01_tensor__connNUM01.mat');
%feFileName = fullfile(s.path,'HCP3T','sub-105115','fe_structures','fe_structure_105115_STC_run01_tensor__connNUM01.mat');
load(feFileName)
sbj = retrieve_results(fe,'TENSOR', 'HCP3T');
% plot new data point
Add_new_data_point(sbj,'cold',2)
% 3.2 These results were obtained by using CSD-based Probabilistic
% tractography and the STN data set.
disp('loading fe_structures for FP subject in STN dataset (PROB) ...')
feFileName = fullfile(feDemoDataPath('STN','sub-FP','fe_structures'), ...
'fe_structure_FP_96dirs_b2000_1p5iso_STC_run01_SD_PROB_lmax10_connNUM01.mat');
%feFileName = fullfile(s.path,'STN','sub-FP','fe_structures','fe_structure_FP_96dirs_b2000_1p5iso_STC_run01_SD_PROB_lmax10_connNUM01.mat');
load(feFileName)
sbj = retrieve_results(fe,'PROB', 'STN');
% plot new data point
Add_new_data_point(sbj,'medium',2)
% 3.3 These results were obtained by using tensor-based deterministic
% tractography and the STN data set.
disp('loading fe_structures for FP subject in STN dataset (DET) ...')
feFileName = fullfile(feDemoDataPath('STN','sub-FP','fe_structures'), ...
'fe_structure_FP_96dirs_b2000_1p5iso_STC_run01_tensor__connNUM01.mat');
%feFileName = fullfile(s.path,'STN','sub-FP','fe_structures', 'fe_structure_FP_96dirs_b2000_1p5iso_STC_run01_tensor__connNUM01.mat');
load(feFileName)
sbj = retrieve_results(fe,'TENSOR', 'STN');
% plot new data point
Add_new_data_point(sbj,'medium',2)
% 3.4 These results were obtained by using CSD-based probabilistic
% tractography and the HCP7T data set.
disp('loading fe_structures for 108323 subject in HCP7T dataset (PROB) ...')
feFileName = fullfile(feDemoDataPath('HCP7T','sub-108323','fe_structures'), ...
'fe_structure_108323_STC_run01_SD_PROB_lmax8_connNUM01.mat');
%feFileName = fullfile(s.path,'HCP7T','sub-108323','fe_structures','fe_structure_108323_STC_run01_SD_PROB_lmax8_connNUM01.mat');
load(feFileName)
sbj = retrieve_results(fe,'PROB', 'HCP7T');
% plot new data point
Add_new_data_point(sbj,'hot',2)
% 3.5 These results were obtained by using tensor-based deterministic
% tractography and the HCP7T data set.
disp('loading fe_structures for 108323 subject in HCP7T dataset (DET) ...')
feFileName = fullfile(feDemoDataPath('HCP7T','sub-108323','fe_structures'), ...
'fe_structure_108323_STC_run01_tensor__connNUM01.mat');
%feFileName = fullfile(s.path,'HCP7T','sub-108323','fe_structures','fe_structure_108323_STC_run01_tensor__connNUM01.mat');
load(feFileName)
sbj = retrieve_results(fe,'TENSOR', 'HCP7T');
% plot new data point
Add_new_data_point(sbj,'hot',2)
end
% Below is a series of local helper functions.
function [] = Generate_Fig3_paper_Caiafa_Pestilli(color_mode)
%
% Load data from the demo data repositroy and geenrate a plot similar to
% the one in Figure 3 of Caiafa and Pestilli under review.
%
%DataPath = feDemoDataPath('Figs_data');
DataPath = '/N/dc2/projects/lifebid/code/ccaiafa/Caiafa_Pestilli_paper2015/Revision_Feb2017/Results/Variability/';
HCP_subject_set = {'111312','105115','113619','110411'};
STN_subject_set = {'KK_96dirs_b2000_1p5iso','FP_96dirs_b2000_1p5iso','HT_96dirs_b2000_1p5iso','MP_96dirs_b2000_1p5iso'};
HCP7T_subject_set = {'108323','109123','111312_7T','125525','102311_Paolo_masks'};
fh = figure('name','combined scatter mean +-sem across repeats','color','w');
set(fh,'Position',[0,0,800,600]);
Nalg = 13; % We plot a few data points (13 in total, 6 Prob + 6 Stream + Tensor)
% plot HCP
Gen_plot(HCP_subject_set,'cold',DataPath,Nalg,'HCP3T90',color_mode)
% plot STN
Gen_plot(STN_subject_set,'medium',DataPath,Nalg,'STN96',color_mode)
Nalg = 9; % We plot a few data points (9 in total, 4 Prob + 4 Stream + Tensor)
% plot HCP7T
Gen_plot(HCP7T_subject_set,'hot',DataPath,Nalg,'HCP7T60',color_mode)
set(gca,'tickdir','out', 'ticklen',[0.025 0.025], ...
'box','off','ytick',[2 15 32].*10^4, 'xtick', [0.04 0.07 0.1], ...
'ylim',[2 32].*10^4, 'xlim', [0.04 0.1],'fontsize',20)
axis square
ylabel('Fascicles number','fontsize',20)
xlabel('Connectome error (r.m.s.)','fontsize',20)
drawnow
end
function [] = Gen_plot(subject_set,color_type,DataPath,Nalg,dataset,color_mode)
%
% Generate a scatter plot similar to Caiafa and Pestilli Figure 3
%
nnz_all = zeros(length(subject_set),Nalg,10);
nnz_mean = zeros(length(subject_set),Nalg);
nnz_std = zeros(length(subject_set),Nalg);
alg_names = cell(1,Nalg);
if Nalg==13
range_prob = 2:2:12;
range_det = 3:2:13;
prob_ix_low = [2:7];
prob_ix_high = [15:20];
det_ix_low = [8:13];
det_ix_high = [21:26];
ten_ix_low = [1];
ten_ix_high = [14];
lmax_order = [3,4,5,6,1,2];
else
range_prob = 2:2:8;
range_det = 3:2:9;
prob_ix_low = [2:5];
prob_ix_high = [11:14];
det_ix_low = [6:9];
det_ix_high = [15:18];
ten_ix_low = [1];
ten_ix_high = [10];
lmax_order = [1,2,3,4];
end
n = 1;
for subject = subject_set;
switch dataset
case {'HCP7T60','STN96','HCP3T90'}
DataFile = char(fullfile(DataPath,strcat('Rmse_nnz_10_connectomes_',subject,'_run01','.mat')));
case {'HCP3T60','STN60'}
DataFile = char(fullfile(DataPath,strcat('Rmse_nnz_10_connectomes_',subject,'_60dir*run01','.mat')));
end
load(DataFile)
m = 1;
% Tensor
for p=1:1
rmse_all(n,m,:) = Result_alg(p).rmse;
rmse_mean(n,m) = nanmean(Result_alg(p).rmse);
rmse_std(n,m) = nanstd(Result_alg(p).rmse)./sqrt(length(Result_alg(p).rmse));
nnz_all(n,m,:) = Result_alg(p).nnz;
nnz_mean(n,m) = nanmean(Result_alg(p).nnz);
nnz_std(n,m) = nanstd(Result_alg(p).nnz)./sqrt(length(Result_alg(p).nnz));
alg_names{m} = char(alg_info(p).description);
m = m +1;
end
% Prob
for p = range_prob
rmse_all(n,m,:) = Result_alg(p).rmse;
rmse_mean(n,m) = nanmean(Result_alg(p).rmse);
rmse_std(n,m) = nanstd(Result_alg(p).rmse)./sqrt(length(Result_alg(p).rmse));
nnz_all(n,m,:) = Result_alg(p).nnz;
nnz_mean(n,m) = mean(Result_alg(p).nnz);
nnz_std(n,m) = std(Result_alg(p).nnz)./sqrt(length(Result_alg(p).nnz));
alg_names{m} = char(alg_info(p).description);
m = m +1;
end
% Det
for p = range_det
rmse_all(n,m,:) = Result_alg(p).rmse;
rmse_mean(n,m) = nanmean(Result_alg(p).rmse);
rmse_std(n,m) = nanstd(Result_alg(p).rmse)./sqrt(length(Result_alg(p).rmse));
nnz_all(n,m,:) = Result_alg(p).nnz;
nnz_mean(n,m) = nanmean(Result_alg(p).nnz);
nnz_std(n,m) = nanstd(Result_alg(p).nnz)./sqrt(length(Result_alg(p).nnz));
alg_names{m} = char(alg_info(p).description);
m = m +1;
end
n = n + 1;
end
switch color_mode
case 'original'
c = getNiceColors(color_type);
case 'gray'
c = repmat([.9,.9,.9], [length(subject_set),1]);
end
for is = 1:size(nnz_all,1)
tmp_rmse = squeeze(rmse_all(is,:,:));
tmp_rmse(isinf(tmp_rmse)) = nan;
tmp_nnz = squeeze(nnz_all(is,:,:));
tmp_nnz(isinf(tmp_nnz)) = nan;
% mu and sem RMSE
rmse_mu(is,:) = squeeze(nanmean(tmp_rmse,2));
rmse_ci(is,:) = [rmse_mu(is,:), rmse_mu(is,:)] + 5*([-nanstd(tmp_rmse,[],2),;nanstd(tmp_rmse,[],2)]' ./sqrt(size(tmp_rmse,2)));
% mu and sem NNZ
nnz_mu(is,:) = squeeze(nanmean(tmp_nnz,2));
nnz_ci(is,:) = [nnz_mu(is,:), nnz_mu(is,:)] + 5*([-nanstd(tmp_nnz,[],2);nanstd(tmp_nnz,[],2)]' ./sqrt(size(tmp_rmse,2)));
end
% scatter plot with confidence intervals first all in gray
a = 0.5;
for ii = 1:length(subject_set) % subjects
hold on
% PROB
for iii = lmax_order
plot(rmse_mean(ii,prob_ix_low(iii)), nnz_mean(ii,prob_ix_low(iii)),'o','markerfacecolor',c(ii,:),'markeredgecolor',[.5,.5,.5],'linewidth',0.5,'markersize',14)
plot([rmse_ci(ii,prob_ix_low(iii)); rmse_ci(ii,prob_ix_high(iii))], [nnz_mu(ii,prob_ix_low(iii)); nnz_mu(ii,prob_ix_low(iii))],'-','color',[a a a],'linewidth',2)
plot([rmse_mu(ii,prob_ix_low(iii)); rmse_mu(ii,prob_ix_low(iii))], [nnz_ci(ii,[prob_ix_low(iii)]); nnz_ci(ii,prob_ix_high(iii))],'-','color',[a a a],'linewidth',2)
end
% DET
for iii = lmax_order
plot(rmse_mean(ii,det_ix_low(iii)), nnz_mean(ii,det_ix_low(iii)),'s','markerfacecolor',c(ii,:),'markeredgecolor',[.5,.5,.5],'linewidth',0.5,'markersize',14)
plot([rmse_ci(ii,det_ix_low(iii)); rmse_ci(ii,[det_ix_high(iii)])], [nnz_mu(ii,det_ix_low(iii)); nnz_mu(ii,det_ix_low(iii))],'-','color',[a a a],'linewidth',2)
plot([rmse_mu(ii,det_ix_low(iii)); rmse_mu(ii,det_ix_low(iii));], [nnz_ci(ii,det_ix_low(iii)); nnz_ci(ii,[det_ix_high(iii)])],'-','color',[a a a],'linewidth',2)
end
% TENSOR
plot(rmse_mean(ii,ten_ix_low), nnz_mean(ii,ten_ix_low),'d','markerfacecolor',c(ii,:),'markeredgecolor',[.5,.5,.5],'linewidth',0.5,'markersize',14)
plot([rmse_ci(ii,ten_ix_low); rmse_ci(ii,ten_ix_high)], [nnz_mu(ii,ten_ix_low); nnz_mu(ii,ten_ix_low)],'-','color',[a a a],'linewidth',2)
plot([rmse_mu(ii,ten_ix_low); rmse_mu(ii,ten_ix_low)], [nnz_ci(ii,ten_ix_low); nnz_ci(ii,ten_ix_high)],'-','color',[a a a],'linewidth',2)
end
end
function c = getNiceColors(color_type)
%
% Load look-up-table for plot colors.
%
dotest = false;
c1 = colormap(parula(32));
c2 = colormap(autumn(32));
if dotest
figure('name','C1 color test');
hold on
for ii = 1:size(c1,1)
plot(ii,1,'o','markerfacecolor',c1(ii,:),'markersize',12)
text(ii-0.75,1,sprintf('%i',ii))
end
figure('name','C2 color test');
hold on
for ii = 1:size(c2,1)
plot(ii,1,'o','markerfacecolor',c2(ii,:),'markersize',12)
text(ii-0.75,1,sprintf('%i',ii))
end
keyboard
end
switch color_type
case 'cold'
c = [c1([1 3 6 9],:) ];
case 'medium'
c = [c1([12 16 19 23],:) ];
case 'hot'
%c = [c2([32 25 13 5],:)];
c = [c2([32 27 19 12 2],:)];
end
end
function [sbj] = retrieve_results(fe,alg,name)
%
% Extracts results from a precomputed FE strcuture.
% These results compare
%
sbj.alg = alg;
sbj.name = name;
% We use the core function feGet.m to extract the RMSE and the B0 (MRI
% measureemnts without the diffusion-weighted gradient applied).
%
% We compute the mean RMSE across the whole white matter volume.
sbj.rmse = nanmean(feGet(fe,'voxrmses0norm'));
% We find the positive weights and disregard the NaNs. THen compute the
% number of postive weights (number of fascicles with non-zero weight, alse
% referred to as conenctome density).
sbj.nnz = feGet(fe,'connectome density');
end
function [] = Add_new_data_point(sbj,color_type,order)
%
% This function adds a new data point precomputed into the scater plot that
% compares connectome prediction error and resolution.
%
c = getNiceColors(color_type);
%% scatter plot
a = 0.5;
switch sbj.alg
case 'PROB'
plot(sbj.rmse, sbj.nnz,'o','markerfacecolor',c(order,:),'markeredgecolor','k','linewidth',a,'markersize',14,'DisplayName',[sbj.name,' ',sbj.alg])
case 'DET'
plot(sbj.rmse, sbj.nnz,'s','markerfacecolor',c(order,:),'markeredgecolor','k','linewidth',a,'markersize',14,'DisplayName',[sbj.name,' ',sbj.alg])
case 'TENSOR'
plot(sbj.rmse, sbj.nnz,'d','markerfacecolor',c(order,:),'markeredgecolor','k','linewidth',a,'markersize',14,'DisplayName',[sbj.name,' ',sbj.alg])
end
drawnow
end