forked from kctess5/range_libc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_plots.py
80 lines (63 loc) · 2.05 KB
/
make_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import csv
import numpy as np
from scipy.ndimage.morphology import distance_transform_edt
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.axes_grid1 import make_axes_locatable
def reject_outliers(data, m = 12.):
d = np.abs(data - np.median(data))
mdev = np.median(d)
s = d/mdev if mdev else 0.
return data[s<m]
def get_data(fn):
# print fn
reader = csv.reader(open(fn,"rb"),delimiter=',')
raw_data = list(reader)
# print raw_data[0], ra
result=np.array(raw_data[1:]).astype('float')
data = result[:,3]
# data = reject_outliers(data)
data = data[data<0.0000035]
return data
def violin_plot():
folder = "./tmp/"
files = ["glt.csv", "pcddt.csv", "cddt.csv", "rm.csv", "bl.csv"]
label = ['Lookup table','Pruned CDDT','CDDT','Ray Marching',"Bresenham's line"]
files = map(lambda x: folder + x, files)
# print files
data = map(get_data, files)
pos = [1,2,3,4,5]
# for i in xrange(5):
# print files[i]
# print np.mean(data[i])
# print np.median(data[i])
# print np.std(data[i])
# pass
# data = get_data("../range_libc/info/logs/1_lut.csv")
# pos = [1]
# reader = csv.reader(open("../range_libc/somefile.csv","rb"),delimiter=',')
# raw_data = list(reader)
# print raw_data[0]
# result=np.array(raw_data[1:]).astype('float')
# data = reject_outliers(result[:,3])
# print np.mean(result[:,3])
fig, axes = plt.subplots(1,1)
# # pos = [1, 2, 4, 5, 7, 8]
# # data = [np.random.normal(size=100) for i in pos]
violin_parts = axes.violinplot(data, pos, points=1000, widths=0.75, vert=False,
showmeans=True, showextrema=False, showmedians=True)
axes.set_yticks(pos)
axes.set_yticklabels(label)
axes.set_title("Completion times for basement map")
plt.tight_layout()
for pc in violin_parts['bodies']:
pc.set_facecolor('red')
pc.set_edgecolor('black')
pass
if __name__ == '__main__':
print "Hello world."
# dist_transform = make_small_distance_transform_plot("./maps/basement.map.yaml")
violin_plot()
print "Done making plot"
# plt.savefig('test.png', bbox_inches='tight')
plt.show()