-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathS3_AnalysisOutput_upload.py
819 lines (709 loc) · 57.1 KB
/
S3_AnalysisOutput_upload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
import json
from boto3.dynamodb.conditions import Key, Attr
import time
import os
import csv
from init import pymysql
import MySQLdb
import boto3
import os
dynamodb = boto3.resource('dynamodb')
def downloadDirectoryFroms3(bucketName,remoteDirectoryName):
s3_resource = boto3.resource('s3')
bucket = s3_resource.Bucket(bucketName)
number = 0
for object in bucket.objects.filter(Prefix = remoteDirectoryName):
number = number + 1
#if number == 500:
# break
print(object)
if not os.path.exists(os.path.dirname(object.key)):
os.makedirs(os.path.dirname(object.key))
bucket.download_file(object.key,object.key)
def scan_table(table_name): #runtime: about 15min
#record time for scan the entire table
print(dynamodb)
start = time.time()
table = dynamodb.Table(table_name)
response = table.scan()
items = response['Items']
#continue to gat all records in the table, using ExclusiveStartKey
while True:
print(len(response['Items']))
if response.get('LastEvaluatedKey'):
response = table.scan(
ExclusiveStartKey = response['LastEvaluatedKey']
)
items += response['Items']
else:
break
print('execution time:', time.time() - start)
return items
outputPath = '/usr/src/app/ReCiter/'
#get all filename(i.e. personIdentifier) in the folder
originalDataPath = '/usr/src/app/AnalysisOutput/' #need to modify based on your local directory
#call scan_table function for analysis
identities = scan_table('Identity')
print("Count Items from DynamoDB Identity table:", len(identities))
downloadDirectoryFroms3('reciter-dynamodb', 'AnalysisOutput')
person_list = []
for filename in os.listdir(originalDataPath):
person_list.append(filename)
# person_list.remove('.DS_Store')
person_list.sort()
print(len(person_list))
#use the directory to read files in
items = []
for item in person_list:
#record time
start = time.time()
for line in open(originalDataPath + '{}'.format(item), 'r', encoding='utf-8'):
items.append(json.loads(line))
print('execution time:', time.time() - start)
print(len(items))
#code for personArticle_s3 table
#open a csv file
f = open(outputPath + 'personArticle_s3_mysql.csv','w', encoding='utf-8')
#use count to record the number of person we have finished feature extraction
count = 0
#extract all required nested features
for i in range(len(items)):
article_temp = len(items[i]['reCiterArticleFeatures'])
for j in range(article_temp):
personIdentifier = items[i]['personIdentifier']
pmid = items[i]['reCiterArticleFeatures'][j]['pmid']
totalArticleScoreStandardized = items[i]['reCiterArticleFeatures'][j]['totalArticleScoreStandardized']
totalArticleScoreNonStandardized = items[i]['reCiterArticleFeatures'][j]['totalArticleScoreNonStandardized']
userAssertion = items[i]['reCiterArticleFeatures'][j]['userAssertion']
publicationDateStandardized = items[i]['reCiterArticleFeatures'][j]['publicationDateStandardized']
if 'publicationTypeCanonical' in items[i]['reCiterArticleFeatures'][j]['publicationType']:
publicationTypeCanonical = items[i]['reCiterArticleFeatures'][j]['publicationType']['publicationTypeCanonical']
else:
publicationTypeCanonical = ""
# example1: when you get key error, check whether the key exist in dynamodb or not
if 'scopusDocID' in items[i]['reCiterArticleFeatures'][j]:
scopusDocID = items[i]['reCiterArticleFeatures'][j]['scopusDocID']
else:
scopusDocID = ""
if 'pmcid' in items[i]['reCiterArticleFeatures'][j]:
pmcid = items[i]['reCiterArticleFeatures'][j]['pmcid']
else:
pmcid = ""
journalTitleVerbose = items[i]['reCiterArticleFeatures'][j]['journalTitleVerbose']
journalTitleVerbose = journalTitleVerbose.replace('"', '""')
if 'articleTitle' in items[i]['reCiterArticleFeatures'][j]:
articleTitle = items[i]['reCiterArticleFeatures'][j]['articleTitle']
articleTitle = articleTitle.replace('"', '""')
else:
articleTitle = ""
if 'reCiterArticleAuthorFeatures' not in items[i]['reCiterArticleFeatures'][j]:
largeGroupAuthorship = True
else:
largeGroupAuthorship = False
if 'evidence' in items[i]['reCiterArticleFeatures'][j]:
if 'acceptedRejectedEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
if 'feedbackScoreAccepted' in items[i]['reCiterArticleFeatures'][j]['evidence']['acceptedRejectedEvidence']:
feedbackScoreAccepted = items[i]['reCiterArticleFeatures'][j]['evidence']['acceptedRejectedEvidence']['feedbackScoreAccepted']
else:
feedbackScoreAccepted = 0
if 'feedbackScoreRejected' in items[i]['reCiterArticleFeatures'][j]['evidence']['acceptedRejectedEvidence']:
feedbackScoreRejected = items[i]['reCiterArticleFeatures'][j]['evidence']['acceptedRejectedEvidence']['feedbackScoreRejected']
else:
feedbackScoreRejected = 0
if 'feedbackScoreNull' in items[i]['reCiterArticleFeatures'][j]['evidence']['acceptedRejectedEvidence']:
feedbackScoreNull = items[i]['reCiterArticleFeatures'][j]['evidence']['acceptedRejectedEvidence']['feedbackScoreNull']
else:
feedbackScoreNull = 0
if 'authorNameEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
if 'articleAuthorName' in items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']:
if 'firstName' in items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['articleAuthorName']:
articleAuthorName_firstName = items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['articleAuthorName']['firstName']
else:
articleAuthorName_firstName = ""
articleAuthorName_lastName = items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['articleAuthorName']['lastName']
else:
articleAuthorName_firstName, articleAuthorName_lastName = "", ""
institutionalAuthorName_firstName = items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['institutionalAuthorName']['firstName']
if 'middleName' in items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['institutionalAuthorName']:
institutionalAuthorName_middleName = items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['institutionalAuthorName']['middleName']
else:
institutionalAuthorName_middleName = ""
institutionalAuthorName_lastName = items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['institutionalAuthorName']['lastName']
nameMatchFirstScore = items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['nameMatchFirstScore']
if 'nameMatchFirstType' in items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']:
nameMatchFirstType = items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['nameMatchFirstType']
nameMatchMiddleScore = items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['nameMatchMiddleScore']
if 'nameMatchMiddleType' in items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']:
nameMatchMiddleType = items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['nameMatchMiddleType']
nameMatchLastScore = items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['nameMatchLastScore']
if 'nameMatchLastType' in items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']:
nameMatchLastType = items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['nameMatchLastType']
nameMatchModifierScore = items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['nameMatchModifierScore']
nameScoreTotal = items[i]['reCiterArticleFeatures'][j]['evidence']['authorNameEvidence']['nameScoreTotal']
if 'emailEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
emailMatch = items[i]['reCiterArticleFeatures'][j]['evidence']['emailEvidence']['emailMatch']
if 'false' in emailMatch:
emailMatch = ""
emailMatchScore = items[i]['reCiterArticleFeatures'][j]['evidence']['emailEvidence']['emailMatchScore']
else:
emailMatch, emailMatchScore = "", 0
if 'journalCategoryEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
journalSubfieldScienceMetrixLabel = items[i]['reCiterArticleFeatures'][j]['evidence']['journalCategoryEvidence']['journalSubfieldScienceMetrixLabel']
journalSubfieldScienceMetrixLabel = journalSubfieldScienceMetrixLabel.replace('"', '""')
journalSubfieldScienceMetrixID = items[i]['reCiterArticleFeatures'][j]['evidence']['journalCategoryEvidence']['journalSubfieldScienceMetrixID']
journalSubfieldDepartment = items[i]['reCiterArticleFeatures'][j]['evidence']['journalCategoryEvidence']['journalSubfieldDepartment']
journalSubfieldDepartment = journalSubfieldDepartment.replace('"', '""')
journalSubfieldScore = items[i]['reCiterArticleFeatures'][j]['evidence']['journalCategoryEvidence']['journalSubfieldScore']
else:
journalSubfieldScienceMetrixLabel, journalSubfieldScienceMetrixID, journalSubfieldDepartment, journalSubfieldScore = "", "", "", 0
if 'relationshipEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
if 'relationshipEvidenceTotalScore' in items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']:
relationshipEvidenceTotalScore = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipEvidenceTotalScore']
else:
relationshipEvidenceTotalScore = 0
if 'relationshipNegativeMatch' in items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']:
relationshipMinimumTotalScore = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipNegativeMatch']['relationshipMinimumTotalScore']
relationshipNonMatchCount = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipNegativeMatch']['relationshipNonMatchCount']
relationshipNonMatchScore = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipNegativeMatch']['relationshipNonMatchScore']
else:
relationshipMinimumTotalScore, relationshipNonMatchCount, relationshipNonMatchScore = 0, 0, 0
else:
relationshipEvidenceTotalScore, relationshipMinimumTotalScore, relationshipNonMatchCount, relationshipNonMatchScore = 0, 0, 0, 0
if 'educationYearEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
if 'articleYear' in items[i]['reCiterArticleFeatures'][j]['evidence']['educationYearEvidence']:
articleYear = items[i]['reCiterArticleFeatures'][j]['evidence']['educationYearEvidence']['articleYear']
else:
articleYear = 0
if 'identityBachelorYear' in items[i]['reCiterArticleFeatures'][j]['evidence']['educationYearEvidence']:
identityBachelorYear = items[i]['reCiterArticleFeatures'][j]['evidence']['educationYearEvidence']['identityBachelorYear']
else:
identityBachelorYear = ""
if 'discrepancyDegreeYearBachelor' in items[i]['reCiterArticleFeatures'][j]['evidence']['educationYearEvidence']:
discrepancyDegreeYearBachelor = items[i]['reCiterArticleFeatures'][j]['evidence']['educationYearEvidence']['discrepancyDegreeYearBachelor']
else:
discrepancyDegreeYearBachelor = 0
if 'discrepancyDegreeYearBachelorScore' in items[i]['reCiterArticleFeatures'][j]['evidence']['educationYearEvidence']:
discrepancyDegreeYearBachelorScore = items[i]['reCiterArticleFeatures'][j]['evidence']['educationYearEvidence']['discrepancyDegreeYearBachelorScore']
else:
discrepancyDegreeYearBachelorScore = 0
if 'identityDoctoralYear' in items[i]['reCiterArticleFeatures'][j]['evidence']['educationYearEvidence']:
identityDoctoralYear = items[i]['reCiterArticleFeatures'][j]['evidence']['educationYearEvidence']['identityDoctoralYear']
else:
identityDoctoralYear = ""
if 'discrepancyDegreeYearDoctoral' in items[i]['reCiterArticleFeatures'][j]['evidence']['educationYearEvidence']:
discrepancyDegreeYearDoctoral = items[i]['reCiterArticleFeatures'][j]['evidence']['educationYearEvidence']['discrepancyDegreeYearDoctoral']
else:
discrepancyDegreeYearDoctoral = 0
if 'discrepancyDegreeYearDoctoralScore' in items[i]['reCiterArticleFeatures'][j]['evidence']['educationYearEvidence']:
discrepancyDegreeYearDoctoralScore = items[i]['reCiterArticleFeatures'][j]['evidence']['educationYearEvidence']['discrepancyDegreeYearDoctoralScore']
else:
discrepancyDegreeYearDoctoralScore = 0
else:
articleYear, identityBachelorYear, discrepancyDegreeYearBachelor, discrepancyDegreeYearBachelorScore, identityDoctoralYear, discrepancyDegreeYearDoctoral, discrepancyDegreeYearDoctoralScore = 0, "", 0, 0, "", 0, 0
if 'genderEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
genderScoreArticle = items[i]['reCiterArticleFeatures'][j]['evidence']['genderEvidence']['genderScoreArticle']
genderScoreIdentity = items[i]['reCiterArticleFeatures'][j]['evidence']['genderEvidence']['genderScoreIdentity']
genderScoreIdentityArticleDiscrepancy = items[i]['reCiterArticleFeatures'][j]['evidence']['genderEvidence']['genderScoreIdentityArticleDiscrepancy']
else:
genderScoreArticle, genderScoreIdentity, genderScoreIdentityArticleDiscrepancy = 0, 0, 0
if 'personTypeEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
personType = items[i]['reCiterArticleFeatures'][j]['evidence']['personTypeEvidence']['personType']
personTypeScore = items[i]['reCiterArticleFeatures'][j]['evidence']['personTypeEvidence']['personTypeScore']
else:
personType, personTypeScore = "", 0
if 'articleCountEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
countArticlesRetrieved = items[i]['reCiterArticleFeatures'][j]['evidence']['articleCountEvidence']['countArticlesRetrieved']
articleCountScore = items[i]['reCiterArticleFeatures'][j]['evidence']['articleCountEvidence']['articleCountScore']
else:
countArticlesRetrieved, articleCountScore= 0,0
if 'affiliationEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
if 'pubmedTargetAuthorAffiliation' in items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']:
targetAuthorInstitutionalAffiliationArticlePubmedLabel = items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['pubmedTargetAuthorAffiliation']['targetAuthorInstitutionalAffiliationArticlePubmedLabel']
targetAuthorInstitutionalAffiliationArticlePubmedLabel = targetAuthorInstitutionalAffiliationArticlePubmedLabel.replace('"', '""')
pubmedTargetAuthorInstitutionalAffiliationMatchTypeScore = items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['pubmedTargetAuthorAffiliation']['targetAuthorInstitutionalAffiliationMatchTypeScore']
else:
targetAuthorInstitutionalAffiliationArticlePubmedLabel, pubmedTargetAuthorInstitutionalAffiliationMatchTypeScore = "", 0
if 'affiliationEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
if 'scopusNonTargetAuthorAffiliation' in items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']:
scopusNonTargetAuthorInstitutionalAffiliationSource = items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['scopusNonTargetAuthorAffiliation']['nonTargetAuthorInstitutionalAffiliationSource']
scopusNonTargetAuthorInstitutionalAffiliationScore = items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['scopusNonTargetAuthorAffiliation']['nonTargetAuthorInstitutionalAffiliationScore']
else:
scopusNonTargetAuthorInstitutionalAffiliationSource, scopusNonTargetAuthorInstitutionalAffiliationScore= "", 0
if 'averageClusteringEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
totalArticleScoreWithoutClustering = items[i]['reCiterArticleFeatures'][j]['evidence']['averageClusteringEvidence']['totalArticleScoreWithoutClustering']
clusterScoreAverage = items[i]['reCiterArticleFeatures'][j]['evidence']['averageClusteringEvidence']['clusterScoreAverage']
clusterReliabilityScore = items[i]['reCiterArticleFeatures'][j]['evidence']['averageClusteringEvidence']['clusterReliabilityScore']
clusterScoreModificationOfTotalScore = items[i]['reCiterArticleFeatures'][j]['evidence']['averageClusteringEvidence']['clusterScoreModificationOfTotalScore']
if 'clusterIdentifier' in items[i]['reCiterArticleFeatures'][j]['evidence']['averageClusteringEvidence']:
clusterIdentifier = items[i]['reCiterArticleFeatures'][j]['evidence']['averageClusteringEvidence']['clusterIdentifier']
else :
clusterIdentifier = 0
if 'publicationDateDisplay' in items[i]['reCiterArticleFeatures'][j]:
publicationDateDisplay = items[i]['reCiterArticleFeatures'][j]['publicationDateDisplay']
else:
publicationDateDisplay = ""
if 'datePublicationAddedToEntrez' in items[i]['reCiterArticleFeatures'][j]:
datePublicationAddedToEntrez = items[i]['reCiterArticleFeatures'][j]['datePublicationAddedToEntrez']
else:
datePublicationAddedToEntrez = ""
if 'doi' in items[i]['reCiterArticleFeatures'][j]:
doi = items[i]['reCiterArticleFeatures'][j]['doi']
else:
doi = ""
#print(items[i]['reCiterArticleFeatures'][j])
if 'issn' in items[i]['reCiterArticleFeatures'][j]:
issn_temp = len(items[i]['reCiterArticleFeatures'][j]['issn'])
for k in range(issn_temp):
issntype = items[i]['reCiterArticleFeatures'][j]['issn'][k]['issntype']
if issntype == 'Linking':
issn = items[i]['reCiterArticleFeatures'][j]['issn'][k]['issn']
break
if issntype == 'Print':
issn = items[i]['reCiterArticleFeatures'][j]['issn'][k]['issn']
break
if issntype == 'Electronic':
issn = items[i]['reCiterArticleFeatures'][j]['issn'][k]['issn']
break
else:
issn = ""
if 'issue' in items[i]['reCiterArticleFeatures'][j]:
issue = items[i]['reCiterArticleFeatures'][j]['issue']
else:
issue = ""
if 'journalTitleISOabbreviation' in items[i]['reCiterArticleFeatures'][j]:
journalTitleISOabbreviation = items[i]['reCiterArticleFeatures'][j]['journalTitleISOabbreviation']
journalTitleISOabbreviation = journalTitleISOabbreviation.replace('"', '""')
else:
journalTitleISOabbreviation = ""
if 'pages' in items[i]['reCiterArticleFeatures'][j]:
pages = items[i]['reCiterArticleFeatures'][j]['pages']
else:
pages = ""
if 'timesCited' in items[i]['reCiterArticleFeatures'][j]:
timesCited = items[i]['reCiterArticleFeatures'][j]['timesCited']
else:
timesCited = 0
if 'volume' in items[i]['reCiterArticleFeatures'][j]:
volume = items[i]['reCiterArticleFeatures'][j]['volume']
else:
volume = ""
#write all extracted features into csv file
#some string value may contain a comma, in this case, we need to double quote the output value, for example, '"' + str(journalSubfieldScienceMetrixLabel) + '"'
f.write('"' + str(personIdentifier) + '"' + "," + '"' + str(pmid) + '"' + "," + '"' + str(pmcid) + '"' + "," + '"' + str(totalArticleScoreStandardized) + '"' + ","
+ '"' + str(totalArticleScoreNonStandardized) + '"' + "," + '"' + str(userAssertion) + '"' + ","
+ '"' + str(publicationDateDisplay) + '"' + "," + '"' + str(publicationDateStandardized) + '"' + "," + '"' + str(publicationTypeCanonical) + '"' + ","
+ '"' + str(scopusDocID) + '"' + "," + '"' + str(journalTitleVerbose) + '"' + "," + '"' + str(articleTitle) + '"' + "," + '"' + str(feedbackScoreAccepted) + '"' + "," + '"' + str(feedbackScoreRejected) + '"' + "," + '"' + str(feedbackScoreNull) + '"' + ","
+ '"' + str(articleAuthorName_firstName) + '"' + "," + '"' + str(articleAuthorName_lastName) + '"' + "," + '"' + str(institutionalAuthorName_firstName) + '"' + "," + '"' + str(institutionalAuthorName_middleName) + '"' + "," + '"' + str(institutionalAuthorName_lastName) + '"' + ","
+ '"' + str(nameMatchFirstScore) + '"' + "," + '"' + str(nameMatchFirstType) + '"' + "," + '"' + str(nameMatchMiddleScore) + '"' + "," + '"' + str(nameMatchMiddleType) + '"' + ","
+ '"' + str(nameMatchLastScore) + '"' + "," + '"' + str(nameMatchLastType) + '"' + "," + '"' + str(nameMatchModifierScore) + '"' + "," + '"' + str(nameScoreTotal) + '"' + ","
+ '"' + str(emailMatch) + '"' + "," + '"' + str(emailMatchScore) + '"' + ","
+ '"' + str(journalSubfieldScienceMetrixLabel) + '"' + "," + '"' + str(journalSubfieldScienceMetrixID) + '"' + "," + '"' + str(journalSubfieldDepartment) + '"' + "," + '"' + str(journalSubfieldScore) + '"' + ","
+ '"' + str(relationshipEvidenceTotalScore) + '"' + "," + '"' + str(relationshipMinimumTotalScore) + '"' + "," + '"' + str(relationshipNonMatchCount) + '"' + "," + '"' + str(relationshipNonMatchScore) + '"' + ","
+ '"' + str(articleYear) + '"' + "," + '"' + str(identityBachelorYear) + '"' + "," + '"' + str(discrepancyDegreeYearBachelor) + '"' + "," + '"' + str(discrepancyDegreeYearBachelorScore) + '"' + ","
+ '"' + str(identityDoctoralYear) + '"' + "," + '"' + str(discrepancyDegreeYearDoctoral) + '"' + "," + '"' + str(discrepancyDegreeYearDoctoralScore) + '"' + ","
+ '"' + str(genderScoreArticle) + '"' + "," + '"' + str(genderScoreIdentity) + '"' + "," + '"' + str(genderScoreIdentityArticleDiscrepancy) + '"' + ","
+ '"' + str(personType) + '"' + "," + '"' + str(personTypeScore) + '"' + ","
+ '"' + str(countArticlesRetrieved) + '"' + "," + '"' + str(articleCountScore) + '"' + ","
+ '"' + str(targetAuthorInstitutionalAffiliationArticlePubmedLabel) + '"' + "," + '"' + str(pubmedTargetAuthorInstitutionalAffiliationMatchTypeScore) + '"' + "," + '"' + str(scopusNonTargetAuthorInstitutionalAffiliationSource) + '"' + "," + '"' + str(scopusNonTargetAuthorInstitutionalAffiliationScore) + '"' + ","
+ '"' + str(totalArticleScoreWithoutClustering) + '"' + "," + '"' + str(clusterScoreAverage) + '"' + "," + '"' + str(clusterReliabilityScore) + '"' + "," + '"' + str(clusterScoreModificationOfTotalScore) + '"' + ","
+ '"' + str(datePublicationAddedToEntrez) + '"' + "," + '"' + str(clusterIdentifier) + '"' + "," + '"' + str(doi) + '"' + "," + '"' + str(issn) + '"' + "," + '"' + str(issue) + '"' + "," + '"' + str(journalTitleISOabbreviation) + '"' + "," + '"' + str(pages) + '"' + "," + '"' + str(timesCited) + '"' + "," + '"' + str(volume) + '"'
+ "\n")
count += 1
print("here:", count)
f.close()
#### The logic of all parts below is similar to the first part, please refer to the first part for explaination ####
#code for personArticleGrant_s3 table
f = open(outputPath + 'personArticleGrant_s3.csv','w', encoding='utf-8')
count = 0
for i in range(len(items)):
article_temp = len(items[i]['reCiterArticleFeatures'])
for j in range(article_temp):
if 'grantEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
grants_temp = len(items[i]['reCiterArticleFeatures'][j]['evidence']['grantEvidence']['grants'])
for k in range(grants_temp):
personIdentifier = items[i]['personIdentifier']
pmid = items[i]['reCiterArticleFeatures'][j]['pmid']
articleGrant = items[i]['reCiterArticleFeatures'][j]['evidence']['grantEvidence']['grants'][k]['articleGrant']
grantMatchScore = items[i]['reCiterArticleFeatures'][j]['evidence']['grantEvidence']['grants'][k]['grantMatchScore']
institutionGrant = items[i]['reCiterArticleFeatures'][j]['evidence']['grantEvidence']['grants'][k]['institutionGrant']
f.write(str(personIdentifier) + "," + str(pmid) + "," + '"' + str(articleGrant) + '"' + ","
+ str(grantMatchScore) + "," + '"' + str(institutionGrant) + '"' + "\n")
count += 1
print("here:", count)
f.close()
#code for personArticleScopusNonTargetAuthorAffiliation_s3 table
f = open(outputPath + 'personArticleScopusNonTargetAuthorAffiliation_s3.csv','w', encoding='utf-8')
count = 0
for i in range(len(items)):
article_temp = len(items[i]['reCiterArticleFeatures'])
for j in range(article_temp):
if 'affiliationEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
if 'scopusNonTargetAuthorAffiliation' in items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']:
if 'nonTargetAuthorInstitutionalAffiliationMatchKnownInstitution' in items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['scopusNonTargetAuthorAffiliation']:
scopusNonTargetAuthorAffiliation_temp = len(items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['scopusNonTargetAuthorAffiliation']['nonTargetAuthorInstitutionalAffiliationMatchKnownInstitution'])
for k in range(scopusNonTargetAuthorAffiliation_temp):
personIdentifier = items[i]['personIdentifier']
pmid = items[i]['reCiterArticleFeatures'][j]['pmid']
nonTargetAuthorInstitutionalAffiliationMatchKnownInstitution = items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['scopusNonTargetAuthorAffiliation']['nonTargetAuthorInstitutionalAffiliationMatchKnownInstitution'][k]
#since the nonTargetAuthorInstitutionalAffiliationMatchKnownInstitution field contains more than one featureseparated by comma, and string feature contains comma, we need to disdinguish between this two by the following code
count_comma = nonTargetAuthorInstitutionalAffiliationMatchKnownInstitution.count(',')
comma_difference = count_comma - 2
if comma_difference != 0:
nonTargetAuthorInstitutionalAffiliationMatchKnownInstitution = nonTargetAuthorInstitutionalAffiliationMatchKnownInstitution.replace(",", ".", comma_difference)
f.write(str(personIdentifier) + "," + str(pmid) + "," + str(nonTargetAuthorInstitutionalAffiliationMatchKnownInstitution) + "\n")
count += 1
print("here:", count)
f.close()
#code for personArticleScopusTargetAuthorAffiliation_s3 table
f = open(outputPath + 'personArticleScopusTargetAuthorAffiliation_s3.csv','w', encoding='utf-8')
count = 0
for i in range(len(items)):
article_temp = len(items[i]['reCiterArticleFeatures'])
for j in range(article_temp):
if 'affiliationEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
if 'scopusTargetAuthorAffiliation' in items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']:
scopusTargetAuthorAffiliation_temp = len(items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['scopusTargetAuthorAffiliation'])
for k in range(scopusTargetAuthorAffiliation_temp):
personIdentifier = items[i]['personIdentifier']
pmid = items[i]['reCiterArticleFeatures'][j]['pmid']
targetAuthorInstitutionalAffiliationSource = items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['scopusTargetAuthorAffiliation'][k]['targetAuthorInstitutionalAffiliationSource']
if 'scopusTargetAuthorInstitutionalAffiliationIdentity' in items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['scopusTargetAuthorAffiliation'][k]:
scopusTargetAuthorInstitutionalAffiliationIdentity = items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['scopusTargetAuthorAffiliation'][k]['targetAuthorInstitutionalAffiliationIdentity']
else:
scopusTargetAuthorInstitutionalAffiliationIdentity = ""
if 'targetAuthorInstitutionalAffiliationArticleScopusLabel' in items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['scopusTargetAuthorAffiliation'][k]:
targetAuthorInstitutionalAffiliationArticleScopusLabel = items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['scopusTargetAuthorAffiliation'][k]['targetAuthorInstitutionalAffiliationArticleScopusLabel']
else:
targetAuthorInstitutionalAffiliationArticleScopusLabel = ""
targetAuthorInstitutionalAffiliationArticleScopusAffiliationId = items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['scopusTargetAuthorAffiliation'][k]['targetAuthorInstitutionalAffiliationArticleScopusAffiliationId']
targetAuthorInstitutionalAffiliationMatchType = items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['scopusTargetAuthorAffiliation'][k]['targetAuthorInstitutionalAffiliationMatchType']
targetAuthorInstitutionalAffiliationMatchTypeScore = items[i]['reCiterArticleFeatures'][j]['evidence']['affiliationEvidence']['scopusTargetAuthorAffiliation'][k]['targetAuthorInstitutionalAffiliationMatchTypeScore']
f.write(str(personIdentifier) + "," + str(pmid) + "," + str(targetAuthorInstitutionalAffiliationSource) + ","
+ '"' + str(scopusTargetAuthorInstitutionalAffiliationIdentity) + '"' + "," + '"' + str(targetAuthorInstitutionalAffiliationArticleScopusLabel) + '"' + "," + str(targetAuthorInstitutionalAffiliationArticleScopusAffiliationId) + ","
+ str(targetAuthorInstitutionalAffiliationMatchType) + "," + str(targetAuthorInstitutionalAffiliationMatchTypeScore) + "\n")
count += 1
print("here:", count)
f.close()
#code for personArticleDepartment_s3 table
f = open(outputPath + 'personArticleDepartment_s3.csv','w', encoding='utf-8')
count = 0
for i in range(len(items)):
article_temp = len(items[i]['reCiterArticleFeatures'])
for j in range(article_temp):
if 'organizationalUnitEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
organizationalUnit_temp = len(items[i]['reCiterArticleFeatures'][j]['evidence']['organizationalUnitEvidence'])
for k in range(organizationalUnit_temp):
personIdentifier = items[i]['personIdentifier']
pmid = items[i]['reCiterArticleFeatures'][j]['pmid']
identityOrganizationalUnit = items[i]['reCiterArticleFeatures'][j]['evidence']['organizationalUnitEvidence'][k]['identityOrganizationalUnit']
identityOrganizationalUnit = identityOrganizationalUnit.replace('"', '""')
articleAffiliation = items[i]['reCiterArticleFeatures'][j]['evidence']['organizationalUnitEvidence'][k]['articleAffiliation']
articleAffiliation = articleAffiliation.replace('"', '""')
organizationalUnitType = items[i]['reCiterArticleFeatures'][j]['evidence']['organizationalUnitEvidence'][k]['organizationalUnitType']
organizationalUnitMatchingScore = items[i]['reCiterArticleFeatures'][j]['evidence']['organizationalUnitEvidence'][k]['organizationalUnitMatchingScore']
if 'organizationalUnitModifier' in items[i]['reCiterArticleFeatures'][j]['evidence']['organizationalUnitEvidence'][k]:
organizationalUnitModifier = items[i]['reCiterArticleFeatures'][j]['evidence']['organizationalUnitEvidence'][k]['organizationalUnitModifier']
else:
organizationalUnitModifier = ""
organizationalUnitModifierScore = items[i]['reCiterArticleFeatures'][j]['evidence']['organizationalUnitEvidence'][k]['organizationalUnitModifierScore']
f.write(str(personIdentifier) + "," + str(pmid) + "," + '"' + str(identityOrganizationalUnit) + '"' + ","
+ '"' + str(articleAffiliation) + '"' + "," + str(organizationalUnitType) + ","
+ str(organizationalUnitMatchingScore) + "," + str(organizationalUnitModifier) + "," + str(organizationalUnitModifierScore) + "\n")
count += 1
print("here:", count)
f.close()
#code for personArticleRelationship_s3 table
f = open(outputPath + 'personArticleRelationship_s3.csv','w', encoding='utf-8')
#capture misspelling key in the content
misspelling_list = []
count = 0
for i in range(len(items)):
article_temp = len(items[i]['reCiterArticleFeatures'])
for j in range(article_temp):
personIdentifier = items[i]['personIdentifier']
pmid = items[i]['reCiterArticleFeatures'][j]['pmid']
if 'relationshipEvidence' in items[i]['reCiterArticleFeatures'][j]['evidence']:
#the nested key structure is different for every file, so we need to consider two conditions here
if 'relationshipEvidenceTotalScore' not in items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']:
relationshipPositiveMatch_temp = len(items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'])
for k in range(relationshipPositiveMatch_temp):
relationshipNameArticle_firstName = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]['relationshipNameArticle']['firstName']
relationshipNameArticle_lastName = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]['relationshipNameArticle']['lastName']
if 'relationshipNameIdenity' in items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]:
misspelling_list.append((personIdentifier, pmid))
relationshipNameIdentity_firstName = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]['relationshipNameIdenity']['firstName']
relationshipNameIdentity_lastName = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]['relationshipNameIdenity']['lastName']
else:
relationshipNameIdentity_firstName = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]['relationshipNameIdentity']['firstName']
relationshipNameIdentity_lastName = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]['relationshipNameIdentity']['lastName']
if 'relationshipType' in items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]:
relationshipType = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]['relationshipType']
else:
relationshipType = ""
relationshipMatchType = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]['relationshipMatchType']
relationshipMatchingScore = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]['relationshipMatchingScore']
relationshipVerboseMatchModifierScore = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]['relationshipVerboseMatchModifierScore']
relationshipMatchModifierMentor = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]['relationshipMatchModifierMentor']
relationshipMatchModifierMentorSeniorAuthor = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]['relationshipMatchModifierMentorSeniorAuthor']
relationshipMatchModifierManager = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]['relationshipMatchModifierManager']
relationshipMatchModifierManagerSeniorAuthor = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence'][k]['relationshipMatchModifierManagerSeniorAuthor']
f.write(str(personIdentifier) + "," + str(pmid) + "," + str(relationshipNameArticle_firstName) + ","
+ str(relationshipNameArticle_lastName) + "," + str(relationshipNameIdentity_firstName) + ","
+ str(relationshipNameIdentity_lastName) + "," + '"' + str(relationshipType) + '"' + "," + str(relationshipMatchType) + ","
+ str(relationshipMatchingScore) + "," + str(relationshipVerboseMatchModifierScore) + "," + str(relationshipMatchModifierMentor) + ","
+ str(relationshipMatchModifierMentorSeniorAuthor) + "," + str(relationshipMatchModifierManager) + "," + str(relationshipMatchModifierManagerSeniorAuthor) + "\n")
if 'relationshipPositiveMatch' in items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']:
relationshipPositiveMatch_temp = len(items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'])
for k in range(relationshipPositiveMatch_temp):
relationshipNameArticle_firstName = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]['relationshipNameArticle']['firstName']
relationshipNameArticle_lastName = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]['relationshipNameArticle']['lastName']
if 'relationshipNameIdenity' in items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]:
misspelling_list.append((personIdentifier, pmid))
relationshipNameIdentity_firstName = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]['relationshipNameIdenity']['firstName']
relationshipNameIdentity_lastName = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]['relationshipNameIdenity']['lastName']
else:
relationshipNameIdentity_firstName = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]['relationshipNameIdentity']['firstName']
relationshipNameIdentity_lastName = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]['relationshipNameIdentity']['lastName']
if 'relationshipType' in items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]:
relationshipType = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]['relationshipType']
else:
relationshipType = ""
relationshipMatchType = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]['relationshipMatchType']
relationshipMatchingScore = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]['relationshipMatchingScore']
relationshipVerboseMatchModifierScore = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]['relationshipVerboseMatchModifierScore']
relationshipMatchModifierMentor = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]['relationshipMatchModifierMentor']
relationshipMatchModifierMentorSeniorAuthor = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]['relationshipMatchModifierMentorSeniorAuthor']
relationshipMatchModifierManager = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]['relationshipMatchModifierManager']
relationshipMatchModifierManagerSeniorAuthor = items[i]['reCiterArticleFeatures'][j]['evidence']['relationshipEvidence']['relationshipPositiveMatch'][k]['relationshipMatchModifierManagerSeniorAuthor']
f.write(str(personIdentifier) + "," + str(pmid) + "," + str(relationshipNameArticle_firstName) + ","
+ str(relationshipNameArticle_lastName) + "," + str(relationshipNameIdentity_firstName) + ","
+ str(relationshipNameIdentity_lastName) + "," + '"' + str(relationshipType) + '"' + "," + str(relationshipMatchType) + ","
+ str(relationshipMatchingScore) + "," + str(relationshipVerboseMatchModifierScore) + "," + str(relationshipMatchModifierMentor) + ","
+ str(relationshipMatchModifierMentorSeniorAuthor) + "," + str(relationshipMatchModifierManager) + "," + str(relationshipMatchModifierManagerSeniorAuthor) + "\n")
count += 1
print("here:", count)
f.close()
print(misspelling_list)
#code for personArticleAuthor_s3 table
f = open(outputPath + 'personArticleAuthor_s3.csv','w', encoding='utf-8')
#some article is group authorship, so there is no record for authors in the file, here we use a list to record this
no_reCiterArticleAuthorFeatures_list =[]
count = 0
for i in range(len(items)):
article_temp = len(items[i]['reCiterArticleFeatures'])
for j in range(article_temp):
personIdentifier = items[i]['personIdentifier']
pmid = items[i]['reCiterArticleFeatures'][j]['pmid']
if 'reCiterArticleAuthorFeatures' in items[i]['reCiterArticleFeatures'][j]:
author_temp = len(items[i]['reCiterArticleFeatures'][j]['reCiterArticleAuthorFeatures'])
for k in range(author_temp):
if 'firstName' in items[i]['reCiterArticleFeatures'][j]['reCiterArticleAuthorFeatures'][k]:
firstName = items[i]['reCiterArticleFeatures'][j]['reCiterArticleAuthorFeatures'][k]['firstName']
else:
firstName = ""
lastName = items[i]['reCiterArticleFeatures'][j]['reCiterArticleAuthorFeatures'][k]['lastName']
targetAuthor = int(items[i]['reCiterArticleFeatures'][j]['reCiterArticleAuthorFeatures'][k]['targetAuthor'])
rank = items[i]['reCiterArticleFeatures'][j]['reCiterArticleAuthorFeatures'][k]['rank']
if 'orcid' in items[i]['reCiterArticleFeatures'][j]['reCiterArticleAuthorFeatures'][k]:
orcid = items[i]['reCiterArticleFeatures'][j]['reCiterArticleAuthorFeatures'][k]['orcid']
else:
orcid = ""
f.write(str(personIdentifier) + "," + str(pmid) + "," + '"' + str(firstName) + '"' + "," + '"' + str(lastName) + '"' + "," + str(targetAuthor) + "," + str(rank) + "," + str(orcid) + "\n")
else:
no_reCiterArticleAuthorFeatures_list.append((personIdentifier, pmid))
count += 1
print("here:", count)
f.close()
print(no_reCiterArticleAuthorFeatures_list)
#code for person table
f = open(outputPath + 'person_s3.csv','w', encoding='utf-8')
count = 0
for i in range(len(items)):
personIdentifier = items[i]['personIdentifier']
dateAdded = items[i]['dateAdded']
dateUpdated = items[i]['dateUpdated']
precision = items[i]['precision']
recall = items[i]['recall']
countSuggestedArticles = items[i]['countSuggestedArticles']
if 'countPendingArticles' in items[i]:
countPendingArticles = items[i]['countPendingArticles']
else:
countPendingArticles = 0
overallAccuracy = items[i]['overallAccuracy']
mode = items[i]['mode']
f.write(str(personIdentifier) + "," + str(dateAdded) + "," + str(dateUpdated) + ","
+ str(precision) + "," + str(recall) + ","
+ str(countSuggestedArticles) + "," + str(countPendingArticles) + "," + str(overallAccuracy) + "," + str(mode) + "\n")
count += 1
print("here:", count)
f.close()
#code for personArticleKeyword_s3 table
#open a csv file
f = open(outputPath + 'personArticleKeyword_s3.csv','w', encoding='utf-8')
#use count to record the number of person we have finished feature extraction
count = 0
#extract all required nested features
for i in range(len(items)):
article_temp = len(items[i]['reCiterArticleFeatures'])
for j in range(article_temp):
personIdentifier = items[i]['personIdentifier']
pmid = items[i]['reCiterArticleFeatures'][j]['pmid']
if 'articleKeywords' in items[i]['reCiterArticleFeatures'][j]:
keywords_temp = len(items[i]['reCiterArticleFeatures'][j]['articleKeywords'])
for k in range(keywords_temp):
if 'keyword' in items[i]['reCiterArticleFeatures'][j]['articleKeywords'][k]:
keyword = items[i]['reCiterArticleFeatures'][j]['articleKeywords'][k]['keyword']
else:
keyword = ""
f.write(str(personIdentifier) + "," + str(pmid) + "," + '"' + str(keyword) + '"' + "\n")
f.close()
DB_HOST = os.getenv('DB_HOST')
DB_USERNAME = os.getenv('DB_USERNAME')
DB_PASSWORD = os.getenv('DB_PASSWORD')
DB_NAME = os.getenv('DB_NAME')
mydb = MySQLdb.connect(host=DB_HOST,
user=DB_USERNAME,
passwd=DB_PASSWORD,
db=DB_NAME)
cursor = mydb.cursor()
cursor.execute('SET autocommit = 0')
mydb.commit()
#Import person table
f = open(outputPath + 'person_s3.csv','r', encoding='utf-8')
csv_data = csv.reader(f)
person = []
for row in csv_data:
person.append(tuple(row))
cursor.executemany("INSERT INTO person(personIdentifier, dateAdded, dateUpdated, `precision`, recall, countSuggestedArticles, countPendingArticles, overallAccuracy, mode) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s)", person)
mydb.commit()
f.close()
#Update person table with information from Identity table
cursor.execute("TRUNCATE TABLE personPersonType")
mydb.commit()
# prepare query and data
query = """ UPDATE person
SET title = %s,
firstName = %s,
middleName = %s,
lastName = %s,
primaryEmail = %s,
primaryOrganizationalUnit = %s,
primaryInstitution = %s
WHERE personIdentifier = %s """
for i in range(len(identities)):
if 'uid' in identities[i]:
personIdentifier = identities[i]['uid']
if 'title' in identities[i]['identity']:
title = identities[i]['identity']['title']
else:
title = ''
if 'firstName' in identities[i]['identity']['primaryName']:
firstName = identities[i]['identity']['primaryName']['firstName']
else:
firstName = ''
if 'middleName' in identities[i]['identity']['primaryName']:
middleName = identities[i]['identity']['primaryName']['middleName']
else:
middleName = ''
if 'lastName' in identities[i]['identity']['primaryName']:
lastName = identities[i]['identity']['primaryName']['lastName']
else:
lastName = ''
if 'primaryEmail' in identities[i]['identity']:
primaryEmail = identities[i]['identity']['primaryEmail']
else:
primaryEmail = ''
if 'primaryOrganizationalUnit' in identities[i]['identity']:
primaryOrganizationalUnit = identities[i]['identity']['primaryOrganizationalUnit']
else:
primaryOrganizationalUnit = ''
if 'primaryInstitution' in identities[i]['identity']:
primaryInstitution = identities[i]['identity']['primaryInstitution']
else:
primaryInstitution = ''
if 'personTypes' in identities[i]['identity']:
personType = identities[i]['identity']['personTypes']
else:
personType = ''
personTypes = []
for j in range(len(personType)):
data = (personIdentifier,personType[j])
personTypes.append(data)
data = (title, firstName, middleName, lastName, primaryEmail, primaryOrganizationalUnit, primaryInstitution, personIdentifier)
cursor.execute(query, data)
cursor.executemany('INSERT IGNORE into personPersonType(personIdentifier, personType) VALUES(%s, %s)', personTypes)
#Import personArticleAuthor_s3 table
f = open(outputPath + 'personArticleAuthor_s3.csv','r', encoding='utf-8')
csv_data = csv.reader(f)
personArticleAuthor = []
for row in csv_data:
personArticleAuthor.append(tuple(row))
cursor.executemany("INSERT INTO personArticleAuthor(personIdentifier, pmid, authorFirstName, authorLastName, targetAuthor, rank, orcid) VALUES(%s, %s, %s, %s, %s, %s, %s)", personArticleAuthor)
mydb.commit()
f.close()
#Import personArticleRelationship_s3 table
f = open(outputPath + 'personArticleRelationship_s3.csv','r', encoding='utf-8')
csv_data = csv.reader(f)
personArticleRelationship = []
for row in csv_data:
personArticleRelationship.append(tuple(row))
cursor.executemany("INSERT INTO personArticleRelationship(personIdentifier, pmid, relationshipNameArticleFirstName, relationshipNameArticleLastName, relationshipNameIdentityFirstName, relationshipNameIdentityLastName, relationshipType, relationshipMatchType, relationshipMatchingScore, relationshipVerboseMatchModifierScore, relationshipMatchModifierMentor, relationshipMatchModifierMentorSeniorAuthor, relationshipMatchModifierManager, relationshipMatchModifierManagerSeniorAuthor) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)", personArticleRelationship)
mydb.commit()
f.close()
#Import personArticleDepartment_s3 table
f = open(outputPath + 'personArticleDepartment_s3.csv','r', encoding='utf-8')
csv_data = csv.reader(f)
personArticleDepartment = []
for row in csv_data:
personArticleDepartment.append(tuple(row))
cursor.executemany("INSERT INTO personArticleDepartment(personIdentifier, pmid, identityOrganizationalUnit, articleAffiliation, organizationalUnitType, organizationalUnitMatchingScore, organizationalUnitModifier, organizationalUnitModifierScore) VALUES(%s, %s, %s, %s, %s, %s, %s, %s)", personArticleDepartment)
mydb.commit()
f.close()
#Import personArticleScopusTargetAuthorAffiliation_s3 table
f = open(outputPath + 'personArticleScopusTargetAuthorAffiliation_s3.csv','r', encoding='utf-8')
csv_data = csv.reader(f)
personArticleScopusTargetAuthorAffiliation = []
for row in csv_data:
personArticleScopusTargetAuthorAffiliation.append(tuple(row))
cursor.executemany("INSERT INTO personArticleScopusTargetAuthorAffiliation(personIdentifier, pmid, targetAuthorInstitutionalAffiliationSource, scopusTargetAuthorInstitutionalAffiliationIdentity, targetAuthorInstitutionalAffiliationArticleScopusLabel, targetAuthorInstitutionalAffiliationArticleScopusAffiliationId, targetAuthorInstitutionalAffiliationMatchType, targetAuthorInstitutionalAffiliationMatchTypeScore) VALUES(%s, %s, %s, %s, %s, %s, %s, %s)", personArticleScopusTargetAuthorAffiliation)
mydb.commit()
f.close()
#Import personArticleScopusNonTargetAuthorAffiliation_s3 table
f = open(outputPath + 'personArticleScopusNonTargetAuthorAffiliation_s3.csv','r', encoding='utf-8')
csv_data = csv.reader(f)
personArticleScopusNonTargetAuthorAffiliation = []
for row in csv_data:
personArticleScopusNonTargetAuthorAffiliation.append(tuple(row))
cursor.executemany("INSERT INTO personArticleScopusNonTargetAuthorAffiliation(personIdentifier, pmid, nonTargetAuthorInstitutionLabel, nonTargetAuthorInstitutionID, nonTargetAuthorInstitutionCount) VALUES(%s, %s, %s, %s, %s)", personArticleScopusNonTargetAuthorAffiliation)
mydb.commit()
f.close()
#Import personArticleGrant_s3 table
f = open(outputPath + 'personArticleGrant_s3.csv','r', encoding='utf-8')
csv_data = csv.reader(f)
personArticleGrant = []
for row in csv_data:
personArticleGrant.append(tuple(row))
cursor.executemany("INSERT INTO personArticleGrant(personIdentifier, pmid, articleGrant, grantMatchScore, institutionGrant) VALUES(%s, %s, %s, %s, %s)", personArticleGrant)
mydb.commit()
f.close()
#Import personArticleKeyword table
f = open(outputPath + 'personArticleKeyword_s3.csv','r', encoding='utf-8')
csv_data = csv.reader(f)
personArticleKeyword = []
for row in csv_data:
personArticleKeyword.append(tuple(row))
cursor.executemany("INSERT INTO personArticleKeyword(personIdentifier, pmid, keyword) VALUES(%s, %s, %s)", personArticleKeyword)
mydb.commit()
f.close()
#Import personArticle_s3_mysql table
f = open(outputPath + 'personArticle_s3_mysql.csv','r', encoding='utf-8')
csv_data = csv.reader(f, quotechar='"', delimiter=',', quoting=csv.QUOTE_ALL, skipinitialspace=True)
personArticle = []
for row in csv_data:
personArticle.append(tuple(row))
cursor.executemany("INSERT INTO personArticle(personIdentifier, pmid, pmcid, totalArticleScoreStandardized, totalArticleScoreNonStandardized, userAssertion, publicationDateDisplay, publicationDateStandardized, publicationTypeCanonical, scopusDocID, journalTitleVerbose, articleTitle, feedbackScoreAccepted, feedbackScoreRejected, feedbackScoreNull, articleAuthorNameFirstName, articleAuthorNameLastName, institutionalAuthorNameFirstName, institutionalAuthorNameMiddleName, institutionalAuthorNameLastName, nameMatchFirstScore, nameMatchFirstType, nameMatchMiddleScore, nameMatchMiddleType, nameMatchLastScore, nameMatchLastType, nameMatchModifierScore, nameScoreTotal, emailMatch, emailMatchScore, journalSubfieldScienceMetrixLabel, journalSubfieldScienceMetrixID, journalSubfieldDepartment, journalSubfieldScore, relationshipEvidenceTotalScore, relationshipMinimumTotalScore, relationshipNonMatchCount, relationshipNonMatchScore, articleYear, identityBachelorYear, discrepancyDegreeYearBachelor, discrepancyDegreeYearBachelorScore, identityDoctoralYear, discrepancyDegreeYearDoctoral, discrepancyDegreeYearDoctoralScore, genderScoreArticle, genderScoreIdentity, genderScoreIdentityArticleDiscrepancy, personType, personTypeScore, countArticlesRetrieved, articleCountScore, targetAuthorInstitutionalAffiliationArticlePubmedLabel, pubmedTargetAuthorInstitutionalAffiliationMatchTypeScore, scopusNonTargetAuthorInstitutionalAffiliationSource, scopusNonTargetAuthorInstitutionalAffiliationScore, totalArticleScoreWithoutClustering, clusterScoreAverage, clusterReliabilityScore, clusterScoreModificationOfTotalScore, datePublicationAddedToEntrez, clusterIdentifier, doi, issn, issue, journalTitleISOabbreviation, pages, timesCited, volume) VALUES(%s, %s, NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''), NULLIF(%s,''))",
personArticle)
f.close()
#close the connection to the database.
mydb.commit()
cursor.close()