-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_19x19ab_prune.cpp
58 lines (45 loc) · 1.84 KB
/
benchmark_19x19ab_prune.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
// Copyright [2015, 2016] <duncan@wduncanfraser.com>
// Performance test for NeuralNet
#include <iostream>
#include <chrono>
#include <vector>
#include <limits>
#include "gogame.h"
#include "gogameab.h"
#include "gogamenn.h"
int main() {
uint8_t board_size = 19;
GoGame test_game(board_size);
GoMove best_move(test_game.get_board());
std::chrono::time_point<std::chrono::system_clock> start, end;
// Setup test NN
GoGameNN test_network(board_size, false);
test_network.initialize_random();
// Value of best move
double best_move_value, temp_best_move_value = 0;
// Start timing for ab prune
start = std::chrono::system_clock::now();
// Generate and take black move
test_game.generate_moves(0);
best_move_value = -std::numeric_limits<double>::infinity();
std::vector<GoMove> move_list = test_game.get_move_list();
// For each possible move, calculate Alpha Beta
#pragma omp parallel for firstprivate(test_network)
for (unsigned int i = 0; i < move_list.size(); i++) {
GoGame temp_game(test_game);
temp_game.make_move(move_list[i], 0);
temp_best_move_value = scalable_go_ab_prune(test_network, temp_game, 0,
-std::numeric_limits<double>::infinity(),
std::numeric_limits<double>::infinity(), 1, false, 0);
if (temp_best_move_value > best_move_value) {
best_move_value = temp_best_move_value;
best_move = move_list[i];
}
}
// Make Black Move
test_game.make_move(best_move, 0);
// End timing
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Elapsed time evaluating worst case 19x19 move with 0ply: " << elapsed_seconds.count() << "s\n";
}