diff --git a/tests/test_algos.py b/tests/test_algos.py index 206bc22..64d0a00 100644 --- a/tests/test_algos.py +++ b/tests/test_algos.py @@ -651,9 +651,9 @@ def test_select_all(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0) - data["c1"][dts[1]] = np.nan - data["c2"][dts[1]] = 95 - data["c1"][dts[2]] = -5 + data.loc[dts[1], "c1"] = np.nan + data.loc[dts[1], "c2"] = 95 + data.loc[dts[2], "c1"] = -5 s.setup(data) s.update(dts[0]) @@ -705,9 +705,9 @@ def test_select_randomly_n_none(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0) - data["c1"][dts[1]] = np.nan - data["c2"][dts[1]] = 95 - data["c1"][dts[2]] = -5 + data.loc[dts[1], "c1"] = np.nan + data.loc[dts[1], "c2"] = 95 + data.loc[dts[2], "c1"] = -5 s.setup(data) s.update(dts[0]) @@ -758,9 +758,9 @@ def test_select_randomly(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2", "c3"], data=100.0) - data["c1"][dts[0]] = np.nan - data["c2"][dts[0]] = 95 - data["c3"][dts[0]] = -5 + data.loc[dts[0], "c1"] = np.nan + data.loc[dts[0], "c2"] = 95 + data.loc[dts[0], "c3"] = -5 s.setup(data) s.update(dts[0]) @@ -792,9 +792,9 @@ def test_select_these(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0) - data["c1"][dts[1]] = np.nan - data["c2"][dts[1]] = 95 - data["c1"][dts[2]] = -5 + data.loc[dts[1], "c1"] = np.nan + data.loc[dts[1], "c2"] = 95 + data.loc[dts[2], "c1"] = -5 s.setup(data) s.update(dts[0]) @@ -852,9 +852,9 @@ def test_select_where_all(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0) - data["c1"][dts[1]] = np.nan - data["c2"][dts[1]] = 95 - data["c1"][dts[2]] = -5 + data.loc[dts[1], "c1"] = np.nan + data.loc[dts[1], "c2"] = 95 + data.loc[dts[2], "c1"] = -5 where = pd.DataFrame(index=dts, columns=["c1", "c2"], data=True) @@ -911,7 +911,7 @@ def test_select_where(): where = pd.DataFrame(index=dts, columns=["c1", "c2"], data=True) where.loc[dts[1]] = False - where["c1"].loc[dts[2]] = False + where.loc[dts[2], "c1"] = False algo = algos.SelectWhere("where") @@ -941,7 +941,7 @@ def test_select_where_legacy(): where = pd.DataFrame(index=dts, columns=["c1", "c2"], data=True) where.loc[dts[1]] = False - where["c1"].loc[dts[2]] = False + where.loc[dts[2], "c1"] = False algo = algos.SelectWhere(where) @@ -980,9 +980,9 @@ def test_resolve_on_the_run(): s = bt.Strategy("s") dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2", "b1"], data=100.0) - data["c1"][dts[1]] = np.nan - data["c2"][dts[1]] = 95 - data["c2"][dts[2]] = -5 + data.loc[dts[1], "c1"] = np.nan + data.loc[dts[1], "c2"] = 95 + data.loc[dts[2], "c2"] = -5 on_the_run = pd.DataFrame(index=dts, columns=["c"], data="c1") on_the_run.loc[dts[2], "c"] = "c2" @@ -1097,8 +1097,8 @@ def test_weight_specified(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) s.update(dts[0]) @@ -1128,8 +1128,8 @@ def test_select_has_data(): dts = pd.date_range("2010-01-01", periods=10) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0) - data["c1"].loc[dts[0]] = np.nan - data["c1"].loc[dts[1]] = np.nan + data.loc[dts[0], "c1"] = np.nan + data.loc[dts[1], "c1"] = np.nan s.setup(data) s.update(dts[2]) @@ -1147,8 +1147,8 @@ def test_select_has_data_preselected(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0) - data["c1"].loc[dts[0]] = np.nan - data["c1"].loc[dts[1]] = np.nan + data.loc[dts[0], "c1"] = np.nan + data.loc[dts[1], "c1"] = np.nan s.setup(data) s.update(dts[2]) @@ -1195,8 +1195,8 @@ def test_weigh_target(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0) target = pd.DataFrame(index=dts[:2], columns=["c1", "c2"], data=0.5) - target["c1"].loc[dts[1]] = 1.0 - target["c2"].loc[dts[1]] = 0.0 + target.loc[dts[1], "c1"] = 1.0 + target.loc[dts[1], "c2"] = 0.0 s.setup(data, target=target) @@ -1227,16 +1227,16 @@ def test_weigh_inv_vol(): data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0) # high vol c1 - data["c1"].loc[dts[1]] = 105 - data["c1"].loc[dts[2]] = 95 - data["c1"].loc[dts[3]] = 105 - data["c1"].loc[dts[4]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[2], "c1"] = 95 + data.loc[dts[3], "c1"] = 105 + data.loc[dts[4], "c1"] = 95 # low vol c2 - data["c2"].loc[dts[1]] = 100.1 - data["c2"].loc[dts[2]] = 99.9 - data["c2"].loc[dts[3]] = 100.1 - data["c2"].loc[dts[4]] = 99.9 + data.loc[dts[1], "c2"] = 100.1 + data.loc[dts[2], "c2"] = 99.9 + data.loc[dts[3], "c2"] = 100.1 + data.loc[dts[4], "c2"] = 99.9 s.setup(data) s.update(dts[4]) @@ -1303,12 +1303,12 @@ def test_set_stat(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0) - data["c1"].loc[dts[1]] = 105 - data["c2"].loc[dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 stat = pd.DataFrame(index=dts, columns=["c1", "c2"], data=4.0) - stat["c1"].loc[dts[1]] = 5.0 - stat["c2"].loc[dts[1]] = 6.0 + stat.loc[dts[1], "c1"] = 5.0 + stat.loc[dts[1], "c2"] = 6.0 algo = algos.SetStat("test_stat") @@ -1333,12 +1333,12 @@ def test_set_stat_legacy(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0) - data["c1"].loc[dts[1]] = 105 - data["c2"].loc[dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 stat = pd.DataFrame(index=dts, columns=["c1", "c2"], data=4.0) - stat["c1"].loc[dts[1]] = 5.0 - stat["c2"].loc[dts[1]] = 6.0 + stat.loc[dts[1], "c1"] = 5.0 + stat.loc[dts[1], "c2"] = 6.0 algo = algos.SetStat(stat) @@ -1363,8 +1363,8 @@ def test_stat_total_return(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0) - data["c1"].loc[dts[2]] = 105 - data["c2"].loc[dts[2]] = 95 + data.loc[dts[2], "c1"] = 105 + data.loc[dts[2], "c2"] = 95 s.setup(data) s.update(dts[2]) @@ -1384,8 +1384,8 @@ def test_select_n(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0) - data["c1"].loc[dts[2]] = 105 - data["c2"].loc[dts[2]] = 95 + data.loc[dts[2], "c1"] = 105 + data.loc[dts[2], "c2"] = 95 s.setup(data) s.update(dts[2]) @@ -1424,8 +1424,8 @@ def test_select_n_perc(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0) - data["c1"].loc[dts[2]] = 105 - data["c2"].loc[dts[2]] = 95 + data.loc[dts[2], "c1"] = 105 + data.loc[dts[2], "c2"] = 95 s.setup(data) s.update(dts[2]) @@ -1444,8 +1444,8 @@ def test_select_momentum(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0) - data["c1"].loc[dts[2]] = 105 - data["c2"].loc[dts[2]] = 95 + data.loc[dts[2], "c1"] = 105 + data.loc[dts[2], "c2"] = 95 s.setup(data) s.update(dts[2]) @@ -2024,8 +2024,8 @@ def test_update_risk(): s = bt.Strategy("s", children=[c1, c2]) dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"].loc[dts[1]] = 105 - data["c2"].loc[dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 c1 = s["c1"] c2 = s["c2"] @@ -2064,8 +2064,8 @@ def test_update_risk_history_1(): s = bt.Strategy("s", children=[c1, c2]) dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"].loc[dts[1]] = 105 - data["c2"].loc[dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 c1 = s["c1"] c2 = s["c2"] @@ -2098,8 +2098,8 @@ def test_update_risk_history_2(): s = bt.Strategy("s", children=[c1, c2]) dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"].loc[dts[1]] = 105 - data["c2"].loc[dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 c1 = s["c1"] c2 = s["c2"] diff --git a/tests/test_backtest.py b/tests/test_backtest.py index 59bcbac..ccf1a6f 100644 --- a/tests/test_backtest.py +++ b/tests/test_backtest.py @@ -83,14 +83,14 @@ def test_turnover(): dts = pd.date_range("2010-01-01", periods=5) data = pd.DataFrame(index=dts, columns=["a", "b"], data=100) - data["a"][dts[1]] = 105 - data["b"][dts[1]] = 95 + data.loc[dts[1], "a"] = 105 + data.loc[dts[1], "b"] = 95 - data["a"][dts[2]] = 110 - data["b"][dts[2]] = 90 + data.loc[dts[2], "a"] = 110 + data.loc[dts[2], "b"] = 90 - data["a"][dts[3]] = 115 - data["b"][dts[3]] = 85 + data.loc[dts[3], "a"] = 115 + data.loc[dts[3], "b"] = 85 s = bt.Strategy( "s", [bt.algos.SelectAll(), bt.algos.WeighEqually(), bt.algos.Rebalance()] @@ -265,18 +265,18 @@ def test_30_min_data(): def test_RenomalizedFixedIncomeResult(): dts = pd.date_range("2010-01-01", periods=5) data = pd.DataFrame(index=dts, columns=["a"], data=1.0) - data["a"][dts[0]] = 0.99 - data["a"][dts[1]] = 1.01 - data["a"][dts[2]] = 0.99 - data["a"][dts[3]] = 1.01 - data["a"][dts[4]] = 0.99 + data.loc[dts[0], "a"] = 0.99 + data.loc[dts[1], "a"] = 1.01 + data.loc[dts[2], "a"] = 0.99 + data.loc[dts[3], "a"] = 1.01 + data.loc[dts[4], "a"] = 0.99 weights = pd.DataFrame(index=dts, columns=["a"], data=1.0) - weights["a"][dts[0]] = 1.0 - weights["a"][dts[1]] = 2.0 - weights["a"][dts[2]] = 1.0 - weights["a"][dts[3]] = 2.0 - weights["a"][dts[4]] = 1.0 + weights.loc[dts[0], "a"] = 1.0 + weights.loc[dts[1], "a"] = 2.0 + weights.loc[dts[2], "a"] = 1.0 + weights.loc[dts[3], "a"] = 2.0 + weights.loc[dts[4], "a"] = 1.0 coupons = pd.DataFrame(index=dts, columns=["a"], data=0.0) diff --git a/tests/test_core.py b/tests/test_core.py index 827b6df..98804db 100644 --- a/tests/test_core.py +++ b/tests/test_core.py @@ -225,8 +225,8 @@ def test_security_setup_prices(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[0]] = 105 - data["c2"][dts[0]] = 95 + data.loc[dts[0], "c1"] = 105 + data.loc[dts[0], "c2"] = 95 s.setup(data) @@ -250,8 +250,8 @@ def test_security_setup_prices(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[0]] = 105 - data["c2"][dts[0]] = 95 + data.loc[dts[0], "c1"] = 105 + data.loc[dts[0], "c2"] = 95 s.setup(data) @@ -277,8 +277,8 @@ def test_strategybase_tree_setup(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -302,8 +302,8 @@ def test_strategybase_tree_adjust(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -329,8 +329,8 @@ def test_strategybase_tree_update(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -358,7 +358,7 @@ def test_update_fails_if_price_is_nan_and_position_open(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1"], data=100) - data["c1"][dts[1]] = np.nan + data.loc[dts[1], "c1"] = np.nan c1.setup(data) @@ -396,8 +396,8 @@ def test_strategybase_tree_allocate(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -433,8 +433,8 @@ def test_strategybase_tree_allocate_child_from_strategy(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -480,8 +480,8 @@ def test_strategybase_tree_allocate_level2(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 m.setup(data) @@ -535,8 +535,8 @@ def test_strategybase_tree_allocate_long_short(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -588,8 +588,8 @@ def test_strategybase_tree_allocate_update(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -628,8 +628,8 @@ def test_strategybase_universe(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[0]] = 105 - data["c2"][dts[0]] = 95 + data.loc[dts[0], "c1"] = 105 + data.loc[dts[0], "c2"] = 95 s.setup(data) @@ -651,8 +651,8 @@ def test_strategybase_allocate(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[0]] = 100 - data["c2"][dts[0]] = 95 + data.loc[dts[0], "c1"] = 100 + data.loc[dts[0], "c2"] = 95 s.setup(data) @@ -681,8 +681,8 @@ def test_strategybase_lazy(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[0]] = 105 - data["c2"][dts[0]] = 95 + data.loc[dts[0], "c1"] = 105 + data.loc[dts[0], "c2"] = 95 s.setup(data) @@ -769,12 +769,12 @@ def test_strategybase_multiple_calls(): dts = pd.date_range("2010-01-01", periods=5) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data.c2[dts[0]] = 95 - data.c1[dts[1]] = 95 - data.c2[dts[2]] = 95 - data.c2[dts[3]] = 95 - data.c2[dts[4]] = 95 - data.c1[dts[4]] = 105 + data.loc[dts[0], 'c2'] = 95 + data.loc[dts[1], 'c1'] = 95 + data.loc[dts[2], 'c2'] = 95 + data.loc[dts[3], 'c2'] = 95 + data.loc[dts[4], 'c2'] = 95 + data.loc[dts[4], 'c1'] = 105 s.setup(data) @@ -1027,12 +1027,12 @@ def test_strategybase_multiple_calls_preset_secs(): dts = pd.date_range("2010-01-01", periods=5) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data.c2[dts[0]] = 95 - data.c1[dts[1]] = 95 - data.c2[dts[2]] = 95 - data.c2[dts[3]] = 95 - data.c2[dts[4]] = 95 - data.c1[dts[4]] = 105 + data.loc[dts[0], 'c2'] = 95 + data.loc[dts[1], 'c1'] = 95 + data.loc[dts[2], 'c2'] = 95 + data.loc[dts[3], 'c2'] = 95 + data.loc[dts[4], 'c2'] = 95 + data.loc[dts[4], 'c1'] = 105 s.setup(data) @@ -1275,12 +1275,12 @@ def test_strategybase_multiple_calls_no_post_update(): dts = pd.date_range("2010-01-01", periods=5) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data.c2[dts[0]] = 95 - data.c1[dts[1]] = 95 - data.c2[dts[2]] = 95 - data.c2[dts[3]] = 95 - data.c2[dts[4]] = 95 - data.c1[dts[4]] = 105 + data.loc[dts[0], 'c2'] = 95 + data.loc[dts[1], 'c1'] = 95 + data.loc[dts[2], 'c2'] = 95 + data.loc[dts[3], 'c2'] = 95 + data.loc[dts[4], 'c2'] = 95 + data.loc[dts[4], 'c1'] = 105 s.setup(data) @@ -1525,8 +1525,8 @@ def test_fail_if_root_value_negative(): s = StrategyBase("s") dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[0]] = 100 - data["c2"][dts[0]] = 95 + data.loc[dts[0], "c1"] = 100 + data.loc[dts[0], "c2"] = 95 s.setup(data) s.adjust(-100) @@ -1557,8 +1557,8 @@ def test_fail_if_root_value_negative(): def test_fail_if_0_base_in_return_calc(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[0]] = 100 - data["c2"][dts[0]] = 95 + data.loc[dts[0], "c1"] = 100 + data.loc[dts[0], "c2"] = 95 # must setup tree because if not negative root error pops up first c1 = StrategyBase("c1") @@ -1593,8 +1593,8 @@ def test_strategybase_tree_rebalance(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -1656,8 +1656,8 @@ def test_rebalance_child_not_in_tree(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -1683,8 +1683,8 @@ def test_strategybase_tree_rebalance_to_0(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -1739,8 +1739,8 @@ def test_strategybase_tree_rebalance_level2(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 m.setup(data) @@ -1815,8 +1815,8 @@ def test_strategybase_tree_rebalance_base(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -2056,8 +2056,8 @@ def do_nothing(x): def test_strategy_tree_paper(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["a"], data=100.0) - data["a"].loc[dts[1]] = 101 - data["a"].loc[dts[2]] = 102 + data.loc[dts[1], "a"] = 101 + data.loc[dts[2], "a"] = 102 s = Strategy( "s", @@ -2105,8 +2105,8 @@ def do_nothing(x): parent = Strategy("p", [do_nothing], []) dts = pd.date_range("2010-01-01", periods=4) data = pd.DataFrame(index=dts, columns=["c1", "c2", "c3"], data=100.0) - data["c1"][dts[2]] = 105.0 - data["c2"][dts[2]] = 95.0 + data.loc[dts[2], "c1"] = 105.0 + data.loc[dts[2], "c2"] = 95.0 parent.setup(data) @@ -2176,10 +2176,10 @@ def test_dynamic_strategy2(): dts = pd.date_range("2010-01-01", periods=4) data = pd.DataFrame(index=dts, columns=["c1", "c2", "c3"], data=100.0) - data["c1"][dts[2]] = 105.0 - data["c2"][dts[2]] = 95.0 - data["c1"][dts[3]] = 101.0 - data["c2"][dts[3]] = 99.0 + data.loc[dts[2], "c1"] = 105.0 + data.loc[dts[2], "c2"] = 95.0 + data.loc[dts[3], "c1"] = 101.0 + data.loc[dts[3], "c2"] = 99.0 parent.setup(data) i = 0 @@ -2271,8 +2271,8 @@ def test_outlays(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[0]] = 105 - data["c2"][dts[0]] = 95 + data.loc[dts[0], "c1"] = 105 + data.loc[dts[0], "c2"] = 95 s.setup(data) @@ -2437,7 +2437,7 @@ def test_securitybase_allocate(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1"], data=100.0) # set the price - data["c1"][dts[0]] = 91.40246706608193 + data.loc[dts[0], "c1"] = 91.40246706608193 s.setup(data) i = 0 @@ -2727,7 +2727,7 @@ def test_securitybase_transact(): data = pd.DataFrame(index=dts, columns=["c1"], data=100.0) # set the price price = 91.40246706608193 - data["c1"][dts[0]] = 91.40246706608193 + data.loc[dts[0], "c1"] = 91.40246706608193 s.setup(data) i = 0 @@ -2802,8 +2802,8 @@ def test_couponpayingsecurity_setup(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[0]] = 105 - data["c2"][dts[0]] = 95 + data.loc[dts[0], "c1"] = 105 + data.loc[dts[0], "c2"] = 95 coupons = pd.DataFrame(index=dts, columns=["c1"], data=0.1) @@ -2841,8 +2841,8 @@ def test_couponpayingsecurity_setup_costs(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[0]] = 105 - data["c2"][dts[0]] = 95 + data.loc[dts[0], "c1"] = 105 + data.loc[dts[0], "c2"] = 95 coupons = pd.DataFrame(index=dts, columns=["c1"], data=0.0) cost_long = pd.DataFrame(index=dts, columns=["c1"], data=0.01) @@ -2882,9 +2882,9 @@ def test_couponpayingsecurity_carry(): data = pd.DataFrame(index=dts, columns=["c1"], data=1.0) coupons = pd.DataFrame(index=dts, columns=["c1"], data=0.0) - coupons["c1"][dts[0]] = 0.1 + coupons.loc[dts[0], "c1"] = 0.1 cost_long = pd.DataFrame(index=dts, columns=["c1"], data=0.0) - cost_long["c1"][dts[0]] = 0.01 + cost_long.loc[dts[0], "c1"] = 0.01 cost_short = pd.DataFrame(index=dts, columns=["c1"], data=0.05) s.setup(data, coupons=coupons, cost_long=cost_long, cost_short=cost_short) @@ -2942,12 +2942,12 @@ def test_couponpayingsecurity_transact(): data = pd.DataFrame(index=dts, columns=["c1"], data=100.0) # set the price price = 91.40246706608193 - data["c1"][dts[0]] = 91.40246706608193 - data["c1"][dts[1]] = 91.40246706608193 + data.loc[dts[0], "c1"] = 91.40246706608193 + data.loc[dts[1], "c1"] = 91.40246706608193 coupon = 0.1 coupons = pd.DataFrame(index=dts, columns=["c1"], data=0.0) - coupons["c1"][dts[0]] = coupon + coupons.loc[dts[0], "c1"] = coupon s.setup(data, coupons=coupons) @@ -3030,12 +3030,12 @@ def test_bidoffer(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[0]] = 105 - data["c2"][dts[0]] = 95 + data.loc[dts[0], "c1"] = 105 + data.loc[dts[0], "c2"] = 95 bidoffer = pd.DataFrame(index=dts, columns=["c1", "c2"], data=1.0) - bidoffer["c1"][dts[0]] = 2 - bidoffer["c2"][dts[0]] = 1.5 + bidoffer.loc[dts[0], "c1"] = 2 + bidoffer.loc[dts[0], "c2"] = 1.5 s.setup(data, bidoffer=bidoffer) s.adjust(100000) @@ -3114,7 +3114,7 @@ def test_outlay_custom(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[0]] = 105 + data.loc[dts[0], "c1"] = 105 s.setup(data) s.adjust(100000) @@ -3147,7 +3147,7 @@ def test_bidoffer_custom(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[0]] = 105 + data.loc[dts[0], "c1"] = 105 # Note: In order to access bidoffer_paid, # need to pass bidoffer kwarg during setup @@ -3265,8 +3265,8 @@ def test_fi_strategy_no_bankruptcy(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -3290,8 +3290,8 @@ def test_fi_strategy_tree_adjust(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -3323,9 +3323,9 @@ def test_fi_strategy_tree_update(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = -5 # Test negative prices - data["c2"][dts[2]] = 0 # Test zero price + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = -5 # Test negative prices + data.loc[dts[2], "c2"] = 0 # Test zero price s.setup(data) @@ -3358,8 +3358,8 @@ def test_fi_strategy_tree_allocate(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -3397,8 +3397,8 @@ def test_fi_strategy_tree_allocate_child_from_strategy(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[1]] = 105 - data["c2"][dts[1]] = 95 + data.loc[dts[1], "c1"] = 105 + data.loc[dts[1], "c2"] = 95 s.setup(data) @@ -3823,12 +3823,12 @@ def test_fi_strategy_bidoffer(): dts = pd.date_range("2010-01-01", periods=3) data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100) - data["c1"][dts[0]] = 105 - data["c2"][dts[0]] = 95 + data.loc[dts[0], "c1"] = 105 + data.loc[dts[0], "c2"] = 95 bidoffer = pd.DataFrame(index=dts, columns=["c1", "c2"], data=1.0) - bidoffer["c1"][dts[0]] = 2 - bidoffer["c2"][dts[0]] = 1.5 + bidoffer.loc[dts[0], "c1"] = 2 + bidoffer.loc[dts[0], "c2"] = 1.5 s.setup(data, bidoffer=bidoffer) i = 0