-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
181 lines (132 loc) · 7.15 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn.conv import MessagePassing
from torch_scatter import scatter_add
import utils
class MGCN(torch.nn.Module):
def __init__(self, num_entities, num_relations, num_edges, params):
super(MGCN, self).__init__()
self.params = params
self.entity_embedding = utils.get_param((num_entities, params.gcn_in_dim))
self.relation_embedding = utils.get_param((2 * num_relations, params.gcn_in_dim))
self.edge_embeddings = utils.get_param((2 * num_edges, params.gcn_in_dim))
self.conv1 = MGCNConv(params.gcn_in_dim, params.gcn_out_dim, num_relations * 2)
self.conv2 = ConvE(params, num_entities)
self.loss_fn = torch.nn.BCELoss()
def forward(self, src, rel, data):
entity, edge_index, edge_norm = data.entity, data.edge_index, data.edge_norm
edge_type, edge_ids = data.edge_attr
# Loop-up entity, relation and edge embeddings for gcn encoder
entity_embs = torch.index_select(self.entity_embedding, 0, entity)
edge_embs = torch.index_select(self.edge_embeddings, 0, edge_ids)
# GCN encoder
all_ent, all_rel = self.conv1(entity_embs, edge_index, edge_type, edge_norm, edge_embs, self.relation_embedding)
all_ent = F.dropout(all_ent, p=self.params.gcn_drop, training=self.training)
# ConvE decoder
src_emb, rel_emb = torch.index_select(all_ent, 0, src), torch.index_select(all_rel, 0, rel)
score = self.conv2(src_emb, rel_emb, all_ent)
return score
def loss(self, pred, label):
return self.loss_fn(pred, label)
class MGCNConv(MessagePassing):
def __init__(self, in_channels, out_channels, num_relations, bias=False, dropout=0.1, **kwargs):
super(MGCNConv, self).__init__(aggr='add', **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.num_relations = num_relations
self.ent_bn = nn.BatchNorm1d(out_channels)
self.drop = nn.Dropout(dropout)
self.act = torch.tanh
self.loop_weight = utils.get_param((in_channels, out_channels))
self.in_weight = utils.get_param((in_channels, out_channels))
self.out_weight = utils.get_param((in_channels, out_channels))
self.rels_weight = utils.get_param((in_channels, out_channels))
self.loop_rel = utils.get_param((1, in_channels))
self.loop_edge = utils.get_param((1, in_channels))
if bias is True:
self.register_parameter('bias', nn.Parameter(torch.zeros(out_channels)))
else:
self.register_parameter('bias', None)
def compute_norm(self, edge_index, num_ent):
row, col = edge_index
edge_weight = torch.ones_like(row).float()
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_ent)
deg_inv = deg.pow(-0.5)
deg_inv[deg_inv == float('inf')] = 0
norm = deg_inv[row] * edge_weight * deg_inv[col]
return norm
def forward(self, x, edge_index, edge_type, edge_norm, edge_embs, rels_embs, size=None):
num_edges = edge_type.size(0) // 2
num_ent = x.size(0)
rels_embs = torch.cat([rels_embs, self.loop_rel], dim=0)
in_edge_index, out_edge_index = edge_index[:, :num_edges], edge_index[:, num_edges:]
in_edge_type, out_edge_type = edge_type[:num_edges], edge_type[num_edges:]
in_edge_embs, out_edge_embs = edge_embs[:num_edges], edge_embs[num_edges:]
loop_edge_embs = self.loop_edge.expand(num_ent, -1)
loop_edge_index = torch.stack([torch.arange(num_ent, device=x.device), torch.arange(num_ent, device=x.device)])
loop_edge_type = torch.full((num_ent,), rels_embs.size(0) - 1, dtype=torch.long, device=x.device)
in_edge_norm = self.compute_norm(in_edge_index, num_ent)
out_edge_norm = self.compute_norm(out_edge_index, num_ent)
in_res = self.propagate(in_edge_index, size=size, x=x, edge_type=in_edge_type, edge_norm=in_edge_norm, edge_embs=in_edge_embs, rels_embs=rels_embs, mode='in')
out_res = self.propagate(out_edge_index, size=size, x=x, edge_type=out_edge_type, edge_norm=out_edge_norm, edge_embs=out_edge_embs, rels_embs=rels_embs, mode='out')
loop_res = self.propagate(loop_edge_index, size=size, x=x, edge_type=loop_edge_type, edge_norm=None, edge_embs=loop_edge_embs, rels_embs=rels_embs, mode='loop')
out = (self.drop(in_res) + self.drop(out_res) + loop_res) / 3
if self.bias is not None:
out = out + self.bias
all_ent = self.act(self.ent_bn(out))
all_rel = torch.matmul(rels_embs, self.rels_weight)[:-1]
return all_ent, all_rel
def message(self, x_j, edge_index, edge_type, edge_norm, edge_embs, rels_embs, mode=None):
weight = getattr(self, '{}_weight'.format(mode))
rel_emb = torch.index_select(rels_embs, 0, edge_type)
x_j_rel = x_j * rel_emb * edge_embs
out = torch.matmul(x_j_rel, weight)
return out if edge_norm is None else out * edge_norm.view(-1, 1)
def update(self, aggr_out):
return aggr_out
def __repr__(self):
return '{}({}, {}, num_relations={})'.format(
self.__class__.__name__, self.in_channels, self.out_channels,
self.num_relations)
class ConvE(nn.Module):
def __init__(self, params, num_entities):
super(ConvE, self).__init__()
self.params = params
self.bn0 = nn.BatchNorm2d(1)
self.bn1 = nn.BatchNorm2d(params.num_filter)
self.bn2 = nn.BatchNorm1d(params.gcn_out_dim)
self.hidden_drop = torch.nn.Dropout(params.hidden_drop)
self.feature_drop = torch.nn.Dropout(params.feat_drop)
self.conv_e = torch.nn.Conv2d(
in_channels=1,
out_channels=params.num_filter,
kernel_size=(params.kernel_size, params.kernel_size),
stride=1,
padding=0,
bias=params.bias
)
flat_sz_h = int(2 * params.k_w) - params.kernel_size + 1
flat_sz_w = params.k_h - params.kernel_size + 1
self.flat_sz = flat_sz_h * flat_sz_w * params.num_filter
self.fc = torch.nn.Linear(self.flat_sz, params.gcn_out_dim)
self.register_parameter('bias', nn.Parameter(torch.zeros(num_entities)))
def forward(self, src_emb, rel_emb, all_ent):
src_emb = src_emb.view(-1, 1, self.params.gcn_out_dim)
rel_emb = rel_emb.view(-1, 1, self.params.gcn_out_dim)
stack_inp = torch.cat([src_emb, rel_emb], dim=1)
stack_inp = torch.transpose(stack_inp, 2, 1).reshape(-1, 1, 2 * self.params.k_w, self.params.k_h)
x = self.bn0(stack_inp)
x = self.conv_e(x)
x = self.bn1(x)
x = F.relu(x)
x = self.feature_drop(x)
x = x.view(-1, self.flat_sz)
x = self.fc(x)
x = self.hidden_drop(x)
x = self.bn2(x)
x = F.relu(x)
x = torch.mm(x, all_ent.transpose(1, 0))
x += self.bias.expand_as(x)
score = torch.sigmoid(x)
return score