-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathimage.py
47 lines (35 loc) · 1.67 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
from PIL import Image
import numpy as np
import h5py
import cv2
def load_data(img_path,train = True):
img_folder = os.path.dirname(img_path)
img_name = os.path.basename(img_path)
index = int(img_name.split('.')[0])
prev_index = int(max(1,index-5))
post_index = int(min(150,index+5))
prev_img_path = os.path.join(img_folder,'%03d.jpg'%(prev_index))
post_img_path = os.path.join(img_folder,'%03d.jpg'%(post_index))
prev_gt_path = prev_img_path.replace('.jpg','_resize.h5')
gt_path = img_path.replace('.jpg','_resize.h5')
post_gt_path = post_img_path.replace('.jpg','_resize.h5')
prev_img = Image.open(prev_img_path).convert('RGB')
img = Image.open(img_path).convert('RGB')
post_img = Image.open(post_img_path).convert('RGB')
prev_img = prev_img.resize((640,360))
img = img.resize((640,360))
post_img = post_img.resize((640,360))
gt_file = h5py.File(gt_path)
target = np.asarray(gt_file['density'])
gt_file.close()
target = cv2.resize(target,(int(target.shape[1]/8),int(target.shape[0]/8)),interpolation = cv2.INTER_CUBIC)*64
prev_gt_file = h5py.File(prev_gt_path)
prev_target = np.asarray(prev_gt_file['density'])
prev_gt_file.close()
prev_target = cv2.resize(prev_target,(int(prev_target.shape[1]/8),int(prev_target.shape[0]/8)),interpolation = cv2.INTER_CUBIC)*64
post_gt_file = h5py.File(post_gt_path)
post_target = np.asarray(post_gt_file['density'])
post_gt_file.close()
post_target = cv2.resize(post_target,(int(post_target.shape[1]/8),int(post_target.shape[0]/8)),interpolation = cv2.INTER_CUBIC)*64
return prev_img,img,post_img,prev_target, target, post_target