-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path115_DistinctSubsequeces.java
49 lines (43 loc) · 1.62 KB
/
115_DistinctSubsequeces.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
// Given a string S and a string T, count the number of distinct subsequences of T in S.
// A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).
// Here is an example:
// S = "rabbbit", T = "rabbit"
// Return 3.
//O(mn) space dp
public class Solution {
public int numDistinct(String s, String t) {
int[][] dp = new int[s.length() + 1][t.length() + 1];
for(int i=0; i<s.length(); i++) {
dp[i][0] = 1;
}
for(int i=1; i<s.length() + 1; i++) {
for(int j = 1; j<t.length() + 1; j++) {
if(s.charAt(i - 1) == t.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[s.length()][t.length()];
}
}
//row and col change
public class Solution {
public int numDistinct(String s, String t) {
int[][] dp = new int[t.length() + 1][s.length() + 1];
for(int j = 0; j <= s.length(); j++) {
dp[0][j] = 1;
}
for(int i=0; i<t.length(); i++) {
for(int j=0; j<s.length(); j++) {
if(s.charAt(j) == t.charAt(i)) {
dp[i + 1][j + 1] = dp[i][j] + dp[i + 1][j];
} else {
dp[i + 1][j + 1] = dp[i + 1][j];
}
}
}
return dp[t.length()][s.length()];
}
}