-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathaligning.py
206 lines (167 loc) · 7.48 KB
/
aligning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
'''
Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation
RANSAC for Similarity Transformation Estimation
Written by Srinath Sridhar. Modified by Bowen.
'''
import open3d as o3d
import numpy as np
import cv2,yaml
import itertools
from Utils import *
from scipy.spatial import cKDTree
import torch
import torch.nn as nn
from multiprocessing import Pool
import multiprocessing
from functools import partial
from itertools import repeat
import itertools
def estimateAffine3D(source,target,PassThreshold):
'''
@source: (N,3)
'''
ret,transform,inliers = cv2.estimateAffine3D(source, target,confidence=0.999,ransacThreshold=PassThreshold)
tmp = np.eye(4)
tmp[:3] = transform
transform = tmp
inliers = np.where(inliers>0)[0]
return transform, inliers
def estimate9DTransform_worker(cur_src,cur_dst,source,target,PassThreshold,use_kdtree_for_eval=False,kdtree_eval_resolution=None,max_scale=np.array([99,99,99]),min_scale=np.array([0,0,0]),max_dimensions=None):
bad_return = None,None,None
transform,inliers = estimateAffine3D(source=cur_src,target=cur_dst,PassThreshold=PassThreshold)
new_transform = transform.copy()
scales = np.linalg.norm(transform[:3,:3],axis=0)
if (scales>max_scale).any() or (scales<min_scale).any():
return bad_return
R = transform[:3,:3]/scales.reshape(1,3)
u,s,vh = np.linalg.svd(R)
if s.min()<0.8 or s.max()>1.2:
return bad_return
R = u@vh
if np.linalg.det(R)<0:
return bad_return
new_transform[:3,:3] = R@np.diag(scales)
transform = new_transform.copy()
if max_dimensions is not None:
cloud_at_canonical = (np.linalg.inv(transform)@to_homo(target).T).T[:,:3]
dimensions = cloud_at_canonical.max(axis=0)-cloud_at_canonical.min(axis=0)
if (dimensions>max_dimensions).any():
return bad_return
src_transformed = (transform@to_homo(source).T).T[:,:3]
if not use_kdtree_for_eval:
errs = np.linalg.norm(src_transformed-target,axis=-1)
ratio = np.sum(errs<=PassThreshold)/len(errs)
inliers = np.where(errs<=PassThreshold)[0]
else:
pcd = toOpen3dCloud(target)
pcd = pcd.voxel_down_sample(voxel_size=kdtree_eval_resolution)
kdtree = cKDTree(np.asarray(pcd.points).copy())
dists1,indices1 = kdtree.query(src_transformed)
pcd = toOpen3dCloud(src_transformed)
pcd = pcd.voxel_down_sample(voxel_size=kdtree_eval_resolution)
kdtree = cKDTree(np.asarray(pcd.points).copy())
dists2,indices2 = kdtree.query(target)
errs = np.concatenate((dists1,dists2),axis=0).reshape(-1)
ratio = np.sum(errs<=PassThreshold)/len(errs)
inliers = np.where(dists1<=PassThreshold)[0]
return ratio,transform,inliers
def estimate9DTransform(source,target,PassThreshold,max_iter=1000,use_kdtree_for_eval=False,kdtree_eval_resolution=None,max_scale=np.array([99,99,99]),min_scale=np.array([0,0,0]),max_dimensions=None):
best_transform = None
best_ratio = 0
inliers = None
n_iter = 0
srcs = []
dsts = []
for i in range(max_iter):
ids = np.random.choice(len(source),size=4,replace=False)
cur_src = source[ids]
cur_dst = target[ids]
srcs.append(cur_src)
dsts.append(cur_dst)
outs = []
for i in range(len(srcs)):
out = estimate9DTransform_worker(srcs[i],dsts[i],source,target,PassThreshold,use_kdtree_for_eval,kdtree_eval_resolution=kdtree_eval_resolution,max_scale=max_scale,min_scale=min_scale,max_dimensions=max_dimensions)
if out[0] is None:
continue
outs.append((out))
if len(outs)==0:
return None,None
ratios = []
transforms = []
inlierss = []
for out in outs:
ratio,transform,inliers = out
ratios.append(ratio)
transforms.append(transform)
inlierss.append(inliers)
best_id = np.array(ratios).argmax()
best_transform = transforms[best_id]
inliers = inlierss[best_id]
return best_transform,inliers
def getRANSACInliers(source, target, n_sample=3, MaxIterations=100, PassThreshold=None, est_scale=True):
'''
@source: (N,3)
'''
SourceHom = np.transpose(np.hstack([source, np.ones([source.shape[0], 1])])) #(4,N)
TargetHom = np.transpose(np.hstack([target, np.ones([source.shape[0], 1])]))
BestInlierRatio = 0
BestInlierIdx = np.arange(3)
best_res_vec = None
for i in range(0, MaxIterations):
RandIdx = np.random.choice(np.arange(SourceHom.shape[1]), size=n_sample,replace=False)
Scales, Rotation, Translation, OutTransform = estimateSimilarityUmeyama(SourceHom[:, RandIdx], TargetHom[:, RandIdx], est_scale=est_scale)
if not np.isfinite(OutTransform).all():
continue
ResidualVec, InlierRatio, InlierIdx = evaluateModel(OutTransform, SourceHom, TargetHom, PassThreshold)
if InlierRatio>BestInlierRatio:
BestInlierRatio = InlierRatio
BestInlierIdx = InlierIdx
best_res_vec = ResidualVec
return SourceHom[:, BestInlierIdx], TargetHom[:, BestInlierIdx], BestInlierRatio, BestInlierIdx
def evaluateModel(OutTransform, SourceHom, TargetHom, PassThreshold):
Diff = TargetHom - np.matmul(OutTransform, SourceHom)
ResidualVec = np.linalg.norm(Diff[:3, :], axis=0)
InlierIdx = np.where(ResidualVec < PassThreshold)[0]
if len(InlierIdx)<5:
return ResidualVec,0,np.arange(3)
nInliers = np.sum(ResidualVec < PassThreshold)
InlierRatio = nInliers / float(SourceHom.shape[1])
return ResidualVec, InlierRatio, InlierIdx
def evaluateModelNoThresh(OutTransform, SourceHom, TargetHom):
Diff = TargetHom - np.matmul(OutTransform, SourceHom)
ResidualVec = np.linalg.norm(Diff[:3, :], axis=0)
Residual = np.linalg.norm(ResidualVec)
return Residual
def evaluateModelNonHom(source, target, Scales, Rotation, Translation):
RepTrans = np.tile(Translation, (source.shape[0], 1))
TransSource = (np.diag(Scales) @ Rotation @ source.transpose() + RepTrans.transpose()).transpose()
Diff = target - TransSource
ResidualVec = np.linalg.norm(Diff, axis=0)
Residual = np.linalg.norm(ResidualVec)
return Residual
def estimateSimilarityUmeyama(SourceHom, TargetHom, est_scale=True):
SourceCentroid = np.mean(SourceHom[:3, :], axis=1)
TargetCentroid = np.mean(TargetHom[:3, :], axis=1)
nPoints = SourceHom.shape[1]
CenteredSource = SourceHom[:3, :] - np.tile(SourceCentroid, (nPoints, 1)).transpose() #(3,N)
CenteredTarget = TargetHom[:3, :] - np.tile(TargetCentroid, (nPoints, 1)).transpose()
CovMatrix = np.matmul(CenteredTarget, np.transpose(CenteredSource)) / nPoints
if np.isnan(CovMatrix).any():
raise RuntimeError('There are NANs in the input. nPoints={}'.format(nPoints))
U, D, Vh = np.linalg.svd(CovMatrix, full_matrices=True)
d = (np.linalg.det(U) * np.linalg.det(Vh)) < 0.0
if d:
D[-1] = -D[-1]
U[:, -1] = -U[:, -1]
Rotation = np.matmul(U, Vh).T # Transpose is the one that works
ScaleFact = np.eye(3)
if est_scale:
varP = np.var(SourceHom[:3, :], axis=1).sum()
ScaleFact = 1/varP * np.sum(D) # scale factor
ScaleFact = np.diag([ScaleFact,ScaleFact,ScaleFact])
Translation = TargetHom[:3, :].mean(axis=1) - SourceHom[:3, :].mean(axis=1).dot(ScaleFact@Rotation)
Rotation = Rotation.T
OutTransform = np.identity(4)
OutTransform[:3, :3] = ScaleFact@Rotation
OutTransform[:3, 3] = Translation
return ScaleFact, Rotation, Translation, OutTransform