-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataloader.py
executable file
·91 lines (83 loc) · 4.1 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: winston lin
"""
import numpy as np
from scipy.io import loadmat
import keras
import random
from utils import getPaths, DynamicChunkSplitTrainingData
# Ignore warnings & Fix random seed
import warnings
warnings.filterwarnings("ignore")
random.seed(999)
random_seed=99
class DataGenerator_LLD(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, root_dir, label_dir, batch_size, split_set, emo_attr, shuffle=True):
'Initialization'
self.root_dir = root_dir
self.label_dir = label_dir
self.batch_size = batch_size
self.split_set = split_set # 'Train' or 'Validation'
self.emo_attr = emo_attr # 'Act', 'Dom' or 'Val'
self.shuffle = shuffle
# Loading Norm-Feature Parameters
self.Feat_mean = loadmat('./NormTerm/feat_norm_means.mat')['normal_para']
self.Feat_std = loadmat('./NormTerm/feat_norm_stds.mat')['normal_para']
# Loading Norm-Label Parameters
if emo_attr == 'Act':
self.Label_mean = loadmat('./NormTerm/act_norm_means.mat')['normal_para'][0][0]
self.Label_std = loadmat('./NormTerm/act_norm_stds.mat')['normal_para'][0][0]
elif emo_attr == 'Dom':
self.Label_mean = loadmat('./NormTerm/dom_norm_means.mat')['normal_para'][0][0]
self.Label_std = loadmat('./NormTerm/dom_norm_stds.mat')['normal_para'][0][0]
elif emo_attr == 'Val':
self.Label_mean = loadmat('./NormTerm/val_norm_means.mat')['normal_para'][0][0]
self.Label_std = loadmat('./NormTerm/val_norm_stds.mat')['normal_para'][0][0]
# Loading Data Paths/Labels
self._paths, self._labels = getPaths(label_dir, split_set, emo_attr)
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(len(getPaths(self.label_dir, self.split_set, self.emo_attr)[0])/self.batch_size)
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find Batch list of Loading Paths
list_paths_temp = [self._paths[k] for k in indexes]
list_labels_temp = [self._labels[k] for k in indexes]
# Generate data
data, label = self.__data_generation(list_paths_temp, list_labels_temp)
return data, label
def on_epoch_end(self):
'Updates indexes after each epoch'
_paths, _labels = getPaths(self.label_dir, self.split_set, self.emo_attr)
self.indexes = np.arange(len(_paths))
if self.shuffle == True:
np.random.seed(random_seed)
np.random.shuffle(self.indexes)
def __data_generation(self, list_paths_temp, list_labels_temp):
'Generates data containing batch_size with fixed chunck samples'
batch_x = []
batch_y = []
for i in range(len(list_paths_temp)):
# Store Norm-Data
x = loadmat(self.root_dir + list_paths_temp[i].replace('.wav','.mat'))['Audio_data']
# we use the Interspeech 2013 computational paralinguistics challenge LLDs feature set
# which includes totally 130 features (i.e., the "IS13_ComParE" configuration)
x = x[:,1:] # remove time-info from the extracted OpenSmile LLDs
x = (x-self.Feat_mean)/self.Feat_std # LLDs feature normalization (z-norm)
# Bounded NormFeat Ranging from -3~3 and assign NaN to 0
x[np.isnan(x)]=0
x[x>3]=3
x[x<-3]=-3
# Store Norm-Label
y = (list_labels_temp[i]-self.Label_mean)/self.Label_std
batch_x.append(x)
batch_y.append(y)
# split sentences into fixed length and fixed number of small chunks
batch_chunck_x, batch_chunck_y = DynamicChunkSplitTrainingData(batch_x, batch_y, m=62, C=11, n=1)
return batch_chunck_x, batch_chunck_y