We release our largest model (Swin-Base + CLIP-ViT-L/14) ovseg_swinbase_vitL14_ft_mpt.pth (md5: 526080).
- Test on sample image
python demo.py --config-file configs/ovseg_swinB_vitL_demo.yaml --class-names 'Oculus' 'Ukulele' --input ./resources/demo_samples/sample_03.jpeg --output ./pred --opts MODEL.WEIGHTS #PATH_of_ovseg_swinbase_vitL14_ft_mpt.pth
We release our largest model (Swin-Base + CLIP-ViT-L/14) ovseg_swinbase_vitL14_ft_mpt.pth (md5: 526080).
-
Test on ADE20K-150 and ADE-847
python train_net.py --num-gpu 8 --eval-only --config-file configs/ovseg_swinB_vitL_bs32_120k.yaml MODEL.WEIGHTS #PATH_of_ovseg_swinbase_vitL14_ft_mpt.pth DATASETS.TEST \(\"ade20k_sem_seg_val\",\"ade20k_full_sem_seg_val\"\)
-
Test on PascalContext-59 and PascalContext-459
python train_net.py --num-gpu 8 --eval-only --config-file configs/ovseg_swinB_vitL_bs32_120k.yaml MODEL.WEIGHTS #PATH_of_ovseg_swinbase_vitL14_ft_mpt.pth MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE_WEIGHT 0.6 DATASETS.TEST \(\"pascal_context_59_sem_seg_val\",\"pascal_context_459_sem_seg_val\",\)
-
Test on PascalVOC-20
python train_net.py --num-gpu 8 --eval-only --config-file configs/ovseg_swinB_vitL_bs32_120k.yaml MODEL.WEIGHTS #PATH_of_ovseg_swinbase_vitL14_ft_mpt.pth MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE_WEIGHT 0.45 DATASETS.TEST \(\"pascalvoc20_sem_seg_val\",\)
You may also want to try our small model (R101c + CLIP-ViT-B/16) ovseg_R101c_vitB16_ft_mpt.pth (md5: c746f4).
- Test on ADE20K-150
python train_net.py --num-gpu 8 --eval-only --config-file configs/ovseg_R101c_vitB_bs32_120k.yaml MODEL.WEIGHTS #PATH_of_ovseg_R101c_vitB16_ft_mpt.pth DATASETS.TEST \(\"ade20k_sem_seg_val\",\)
method | backbone | training dataset | A-847 | PC-459 | A-150 | PC-59 | PAS-20 |
---|---|---|---|---|---|---|---|
Open-vocabulary generalist models. | |||||||
SPNet | R-101 | PASCAL-15 | - | - | - | 24.3 | 18.3 |
ZS3Net | R-101 | PASCAL-15 | - | - | - | 19.4 | 38.3 |
LSeg | R-101 | PASCAL-15 | - | - | - | - | 47.4 |
LSeg+ | R-101 | COCO Panoptic | 2.5 | 5.2 | 13.0 | 36.0 | 59.0 |
SimBaseline | R-101c | COCO-Stuff-156 | - | - | 15.3 | - | 74.5 |
ZegFormer | R-50 | COCO-Stuff-156 | - | - | 16.4 | - | 80.7 |
OpenSeg | R-101 | COCO Panoptic | 4.0 | 6.5 | 15.3 | 36.9 | 60.0 |
OVSeg (Ours) | R-101c | COCO-Stuff-171 | 7.1 | 11.0 | 24.8 | 53.3 | 92.6 |
LSeg+ | Eff-B7 | COCO Panoptic | 3.8 | 7.8 | 18.0 | 46.5 | - |
OpenSeg | Eff-B7 | COCO Panoptic | 6.3 | 9.0 | 21.1 | 42.1 | - |
OVSeg (Ours) | Swin-B | COCO-Stuff-171 | 9.0 | 12.4 | 29.6 | 55.7 | 94.5 |
Supervised specialist models. | |||||||
FCN | FCN-8s | Same as test | - | - | 29.4 | 37.8 | - |
Deeplab | R-101 | Same as test | - | - | - | 45.7 | 77.7 |
SelfTrain | Eff-L2 | Same as test | - | - | - | - | 90.0 |
- Mask prompt tuning can bring significant improvement without changing CLIP weights (Table 3 in paper)
Download the checkpoint with mpt only ovseg_swinbase_vitL14_mpt_only.pt (md5: 2dd495).
python train_net.py --num-gpu 8 --eval-only --config-file configs/ovseg_swinB_vitL_bs32_120k.yaml MODEL.WEIGHTS #PATH_of_ovseg_swinbase_vitL14_mpt_only.pt DATASETS.TEST \(\"ade20k_sem_seg_val\",\"ade20k_full_sem_seg_val\"\)
- Mask prompt tuning can improve over fully finetuned model (Table 3 in paper)
With the same ovseg_swinbase_vitL14_ft_mpt.pth checkpoint, set MASK_PROMPT_FWD
as False
python train_net.py --num-gpu 8 --eval-only --config-file configs/ovseg_swinB_vitL_bs32_120k.yaml MODEL.CLIP_ADAPTER.MASK_PROMPT_FWD False MODEL.WEIGHTS #PATH_of_ovseg_swinbase_vitL14_ft_mpt.pth DATASETS.TEST \(\"ade20k_sem_seg_val\",\"ade20k_full_sem_seg_val\"\)
- The effects of class prediction ensemble (Table 6 in paper)
With the same ovseg_swinbase_vitL14_ft_mpt.pth checkpoint, set CLIP_ENSEMBLE
as False
.
python train_net.py --num-gpu 8 --eval-only --config-file configs/ovseg_swinB_vitL_bs32_120k.yaml MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE False MODEL.WEIGHTS #PATH_of_ovseg_swinbase_vitL14_ft_mpt.pth DATASETS.TEST \(\"ade20k_sem_seg_val\",\"ade20k_full_sem_seg_val\"\)
Our model is trained on COCO-Stuff
- Training baseline w/ original CLIP
python train_net.py --num-gpu 8 --config-file configs/ovseg_swinB_vitL_bs32_120k.yaml MODEL.CLIP_ADAPTER.MASK_PROMPT_FWD False
To reproduce our final results, you may want to use the our mask-adapted CLIP
- Training ovseg w/ mask-adapted CLIP
python train_net.py --num-gpu 8 --config-file configs/ovseg_swinB_vitL_bs32_120k.yaml MODEL.CLIP_ADAPTER.CLIP_MODEL_NAME #PATH_TO_MASKADAPTED_CLIP
CAUTION: The final results is sensitive to the ensemble (appendix A.5 in paper). Thus, you may want to use the tools/search_thr_ensemble_w.sh
to find the best ensemble hyper-parameters.
Please see open clip training