-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnextflow-report.Rmd
189 lines (165 loc) · 4.43 KB
/
nextflow-report.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
title: "Nextflow efficiency report"
output: html_document
params:
pipeline_prefix: MAIN_YASCP
elastic_host: dummy
elastic_username: dummy
elastic_password: dummy
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
This document will guide you through the steps you need to answer the question which yascp steps are efficient and which are not.
## Download data
First we need to establish the connection with Elastic
```{r}
library(elastic)
elastic_con <- connect(
host = params$elastic_host,
path = "",
user = params$elastic_username,
pwd = params$elastic_password,
port = 19200,
transport_schema = "http"
)
```
Now we can build a request. Refer here for help: https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
```{r}
b = list(
"query" = list(
"bool" = list(
"filter" = list(
list(
"range" = list(
"START_TIME" = list(
"lte" = "now/d",
"gte" = "now-5d/d"
)
)
),
list(
"term" = list("CLUSTER_NAME" = "farm5")
),
list(
"term" = list("Job" = "Success")
),
list(
"prefix" = list("JOB_NAME" = "nf")
)
)
)
),
"sort" = list("_doc")
)
```
Let's get the data out of there. We need to paginate (scroll) through all results.
```{r download, message=F}
library(data.table)
library(dplyr)
res <- Search(
elastic_con,
index = "user-data-ssg-isg-lsf-analytics-*",
time_scroll="1m",
source = c('MAX_MEM_EFFICIENCY_PERCENT', 'Job_Efficiency_Percent', 'USER_NAME', 'START_TIME',
"JOB_NAME", "MEM_REQUESTED_MB", 'MAX_MEM_USAGE_MB' ,'NUM_EXEC_PROCS'),
body = b,
asdf = T,
size = 10000
)
extract_df_from_elastic_response <- function(x){
x$hits$hits %>%
select(-c('_index', '_type', '_id', '_score', 'sort')) %>%
rename_with(~ gsub("^_source\\.", "", .x)) %>%
as.data.table()
}
dt <- extract_df_from_elastic_response(res)
hits <- 1
c <- 0
while(hits != 0){
res <- scroll(elastic_con, res$`_scroll_id`, asdf = T)
hits <- length(res$hits$hits)
if(hits > 0){
df <- extract_df_from_elastic_response(res)
dt <- rbind(dt, df)
}
c <- c + 1
}
rm(df)
dt$timestamp <- lubridate::as_datetime(dt$START_TIME/1e3)
dt$START_TIME <- NULL
```
Let's filter jobs of yascp
```{r}
dt <- dt[grepl(paste0('^nf-', params$pipeline_prefix), JOB_NAME)]
```
Let's parse Job_name to get a nextflow step
```{r}
dt$step <- gsub(paste0('^nf-', params$pipeline_prefix, '_'), '', dt$JOB_NAME) %>% gsub(pattern = '_\\(.*\\)?$', replacement = '')
DT::datatable( head(dt) )
```
## Plot data
How many different steps?
```{r}
dt %>%
group_by(step) %>%
tally() %>%
arrange(desc(n)) %>%
DT::datatable()
```
### CPU
Let's plot CPU statistics for 20 most frequent steps
```{r fig.height=10, fig.width=10}
library(ggplot2)
dt %>%
group_by(step) %>%
mutate(N = n()) %>%
ungroup() %>%
filter(N >= unique(N) %>% sort(decreasing = T) %>% nth(20)) %>%
ggplot(aes(x = NUM_EXEC_PROCS, group=NUM_EXEC_PROCS, y=Job_Efficiency_Percent)) +
geom_boxplot() +
facet_wrap(. ~ step, ncol = 4, scales = 'free_x') +
theme_bw()
```
Max CPU consumption for each step
```{r message=FALSE, warning=FALSE}
# TODO add median run time (median because I expect high outliers due to lustre glitches)
dt %>%
group_by(step, NUM_EXEC_PROCS) %>%
summarise(N = n(),
best_eff = max(Job_Efficiency_Percent))%>%
DT::datatable(filter = 'top')
```
### RAM
Let's plot RAM statistics for 20 most frequent steps
```{r fig.height=8, fig.width=10}
dt %>%
group_by(step) %>%
mutate(N = n()) %>%
ungroup() %>%
filter(N >= unique(N) %>% sort(decreasing = T) %>% nth(20)) %>%
ggplot(aes(x = step, y=MAX_MEM_EFFICIENCY_PERCENT)) +
geom_boxplot() +
coord_flip() +
theme_bw()
```
Max MEM consumption for each step
```{r}
dt %>%
group_by(step) %>%
summarise(max_mem_used = max(MAX_MEM_USAGE_MB),
max_mem_requested = max(MEM_REQUESTED_MB),
min_mem_requested = min(MEM_REQUESTED_MB),
best_efficiency = max(MAX_MEM_EFFICIENCY_PERCENT),
N = n()) %>%
DT::datatable()
```
More granular MEM consumption
```{r message=FALSE, warning=FALSE}
dt %>%
group_by(step, NUM_EXEC_PROCS, MEM_REQUESTED_MB) %>%
summarise(N = n(),
best_efficiency = max(MAX_MEM_EFFICIENCY_PERCENT),
max_mem_used = max(MAX_MEM_USAGE_MB)) %>%
DT::datatable(filter = 'top')
```