-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimage_utils.py
2485 lines (2055 loc) · 117 KB
/
image_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
import torch
from tqdm import tqdm
import os
import numpy as np
from PIL import Image
from skimage.measure import label, regionprops
from skimage.segmentation import slic
from dataclasses import dataclass
import PIL
import utils
import torchvision.transforms as transforms
from datasets import load_dataset
import pandas as pd
from retrieval_utils import decompose_single_query, decompose_single_query_ls, decompose_single_query_parition_groups
from scipy import ndimage
import cv2
from storage import *
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import gc
import pickle
from LLM4split.prompt_utils import obtain_response_from_openai, prompt_check_correctness, update_decomposed_queries
import math
import networkx as nx
from beir.retrieval import models
from transformers import BlipProcessor, BlipForConditionalGeneration
import json
import requests
from PIL import Image
from io import BytesIO
from transformers import AutoTokenizer, BitsAndBytesConfig
from parse_queries_to_trees import *
from agg_query_processing import Tree, TreeNode
# from llava.model import LlavaLlamaForCausalLM
# import torch
# from llava.conversation import conv_templates, SeparatorStyle
# from llava.utils import disable_torch_init
# from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
# from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
# from transformers import TextStreamer
# def init_llava_model():
# model_path = "liuhaotian/llava-v1.6-mistral-7b"
# kwargs = {"device_map": "auto"}
# kwargs['load_in_4bit'] = True
# kwargs['quantization_config'] = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_compute_dtype=torch.float16,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type='nf4'
# )
# model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
# tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
# vision_tower = model.get_vision_tower()
# if not vision_tower.is_loaded:
# vision_tower.load_model()
# vision_tower.to(device='cuda')
# image_processor = vision_tower.image_processor
# return image_processor, tokenizer, model
# def caption_image_llama(image_file, prompt, image_processor, tokenizer, model):
# if image_file.startswith('http') or image_file.startswith('https'):
# response = requests.get(image_file)
# image = Image.open(BytesIO(response.content)).convert('RGB')
# else:
# image = Image.open(image_file).convert('RGB')
# disable_torch_init()
# conv_mode = "llava_v0"
# conv = conv_templates[conv_mode].copy()
# roles = conv.roles
# image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().cuda()
# inp = f"{roles[0]}: {prompt}"
# inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
# conv.append_message(conv.roles[0], inp)
# conv.append_message(conv.roles[1], None)
# raw_prompt = conv.get_prompt()
# input_ids = tokenizer_image_token(raw_prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
# stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
# keywords = [stop_str]
# stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
# with torch.inference_mode():
# output_ids = model.generate(input_ids, images=image_tensor, do_sample=True, temperature=0.2,
# max_new_tokens=1024, use_cache=True, stopping_criteria=[stopping_criteria])
# outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
# conv.messages[-1][-1] = outputs
# output = outputs.rsplit('</s>', 1)[0]
# return image, output
@dataclass
class Patch:
image: PIL.Image
bbox: tuple
patch: PIL.Image
# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
def generate_caption_and_bboxes(img, scene_graph_model):
CLASSES = [ 'N/A', 'airplane', 'animal', 'arm', 'bag', 'banana', 'basket', 'beach', 'bear', 'bed', 'bench', 'bike',
'bird', 'board', 'boat', 'book', 'boot', 'bottle', 'bowl', 'box', 'boy', 'branch', 'building',
'bus', 'cabinet', 'cap', 'car', 'cat', 'chair', 'child', 'clock', 'coat', 'counter', 'cow', 'cup',
'curtain', 'desk', 'dog', 'door', 'drawer', 'ear', 'elephant', 'engine', 'eye', 'face', 'fence',
'finger', 'flag', 'flower', 'food', 'fork', 'fruit', 'giraffe', 'girl', 'glass', 'glove', 'guy',
'hair', 'hand', 'handle', 'hat', 'head', 'helmet', 'hill', 'horse', 'house', 'jacket', 'jean',
'kid', 'kite', 'lady', 'lamp', 'laptop', 'leaf', 'leg', 'letter', 'light', 'logo', 'man', 'men',
'motorcycle', 'mountain', 'mouth', 'neck', 'nose', 'number', 'orange', 'pant', 'paper', 'paw',
'people', 'person', 'phone', 'pillow', 'pizza', 'plane', 'plant', 'plate', 'player', 'pole', 'post',
'pot', 'racket', 'railing', 'rock', 'roof', 'room', 'screen', 'seat', 'sheep', 'shelf', 'shirt',
'shoe', 'short', 'sidewalk', 'sign', 'sink', 'skateboard', 'ski', 'skier', 'sneaker', 'snow',
'sock', 'stand', 'street', 'surfboard', 'table', 'tail', 'tie', 'tile', 'tire', 'toilet', 'towel',
'tower', 'track', 'train', 'tree', 'truck', 'trunk', 'umbrella', 'vase', 'vegetable', 'vehicle',
'wave', 'wheel', 'window', 'windshield', 'wing', 'wire', 'woman', 'zebra']
REL_CLASSES = ['__background__', 'above', 'across', 'against', 'along', 'and', 'at', 'attached to', 'behind',
'belonging to', 'between', 'carrying', 'covered in', 'covering', 'eating', 'flying in', 'for',
'from', 'growing on', 'hanging from', 'has', 'holding', 'in', 'in front of', 'laying on',
'looking at', 'lying on', 'made of', 'mounted on', 'near', 'of', 'on', 'on back of', 'over',
'painted on', 'parked on', 'part of', 'playing', 'riding', 'says', 'sitting on', 'standing on',
'to', 'under', 'using', 'walking in', 'walking on', 'watching', 'wearing', 'wears', 'with']
# Some transformation functions
transform = transforms.Compose([
transforms.Resize(800),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
im = transform(img).unsqueeze(0)
with torch.no_grad():
captions = []
outputs = scene_graph_model.forward(im)
# keep only predictions with >0.3 confidence
probas = outputs['rel_logits'].softmax(-1)[0, :, :-1]
probas_sub = outputs['sub_logits'].softmax(-1)[0, :, :-1]
probas_obj = outputs['obj_logits'].softmax(-1)[0, :, :-1]
keep = torch.logical_and(probas.max(-1).values > 0.05, torch.logical_and(probas_sub.max(-1).values > 0.05,
probas_obj.max(-1).values > 0.05))
# convert boxes from [0; 1] to image scales
#print(img.size)
sub_bboxes_scaled = rescale_bboxes(outputs['sub_boxes'][0, keep], img.size)
obj_bboxes_scaled = rescale_bboxes(outputs['obj_boxes'][0, keep], img.size)
topk = 100 # display up to 10 images
keep_queries = torch.nonzero(keep, as_tuple=True)[0]
indices = torch.argsort(-probas[keep_queries].max(-1)[0] * probas_sub[keep_queries].max(-1)[0] * probas_obj[keep_queries].max(-1)[0])[:topk]
keep_queries = keep_queries[indices]
# get the feature map shape
#print(img.size)
im_w, im_h = img.size
result = ''
combined_bboxes = []
if len(indices) >= 1:
for idx, (sxmin, symin, sxmax, symax), (oxmin, oymin, oxmax, oymax) in zip(keep_queries, sub_bboxes_scaled[indices], obj_bboxes_scaled[indices]):
val = str(CLASSES[probas_sub[idx].argmax()]+' '+REL_CLASSES[probas[idx].argmax()]+' '+CLASSES[probas_obj[idx].argmax()])
if val not in captions:
# Add the caption to the list
captions.append(val)
combined_bboxes.append([[round(sxmin.item(),2), round(symin.item(),2), round(sxmax.item(),2), round(symax.item(),2)],
[round(oxmin.item(),2), round(oymin.item(),2), round(oxmax.item(),2), round(oymax.item(),2)]])
result = '"' + '"|"'.join(captions) + '"'
#print(result)
else:
result = ''
#print(result)
#print(result)
#print(combined_bboxes)
return (result, combined_bboxes)
def vit_forward(imgs, model, masks=None):
# inputs = processor(imgs, return_tensors="pt").to("cuda")
with torch.no_grad():
# Select the CLS token embedding from the last hidden layer
# return model(pixel_values=imgs).last_hidden_state[:, 0, :]
return model.get_image_features(pixel_values=imgs, output_hidden_states=True)
def blip_vit_forward(image, model):
with torch.no_grad():
return model.extract_features({"image": image}, mode="image").image_embeds_proj[:,0,:]
def filter_atom_images_by_langs(dataset, target_count = 10000):
count = 0
selected_dataset_ls = []
for idx in range(len(dataset)):
if len(dataset[idx]['language']) == 1 and 'en' in dataset[idx]['language']:
selected_dataset_ls.append(dataset[idx])
count += 1
if count >= target_count:
break
return selected_dataset_ls
def determine_n_patches(partition_strategy, depth):
if partition_strategy == "one":
if depth == 0:
n_patches = 32
# elif depth == 1:
# n_patches = 4
else:
n_patches = 2
elif partition_strategy == "two":
if depth == 0:
n_patches = 32
elif depth == 1:
n_patches = 4
else:
n_patches = 2
elif partition_strategy == "three":
if depth == 0:
n_patches = 32
else:
n_patches = 3
elif partition_strategy == "four":
if depth == 0:
n_patches = 16
elif depth == 1:
n_patches = 4
else:
n_patches = 2
return n_patches
def load_atom_datasets(data_path):
image_ls = load_dataset("TREC-AToMiC/AToMiC-Images-v0.2", split='train')
text_ls = load_dataset("TREC-AToMiC/AToMiC-Texts-v0.2", split='train')
# selected_dataset = filter_atom_images_by_langs(dataset)
def load_flickr_dataset(data_path, query_path, subset_img_id=None, redecompose=False):
# img_caption_file_name= os.path.join(query_path, "prod_hard_negatives/prod_vg_hard_negs_swap_all4.csv")
# img_caption_file_name= os.path.join(query_path, "sub_queries.csv")
img_caption_file_name= os.path.join(query_path, "sub_queries2.csv")
img_folder = os.path.join(data_path, "flickr30k-images/")
# img_folder2 = os.path.join(data_path, "VG_100K_2/")
caption_pd = pd.read_csv(img_caption_file_name)
# img_ls = []
img_idx_ls = []
caption_ls = []
sub_caption_ls = []
img_file_name_ls = []
all_grouped_sub_q_ids_ls = []
if 'caption_triples_ls' not in caption_pd.columns:
caption_pd['caption_triples_ls'] = np.nan
if "groups" not in caption_pd.columns:
caption_pd['groups'] = np.nan
for idx in tqdm(range(len(caption_pd))):
image_idx = caption_pd.iloc[idx]['image_id']
if image_idx in img_idx_ls:
continue
full_img_file_name = os.path.join(img_folder, str(image_idx))
# if not os.path.exists(full_img_file_name):
# full_img_file_name = os.path.join(img_folder2, str(image_idx) + ".jpg")
if not os.path.exists(full_img_file_name):
continue
img_file_name_ls.append(full_img_file_name)
# img = Image.open(full_img_file_name)
# img = img.convert('RGB')
caption = caption_pd.iloc[idx]['caption']
# sub_caption_str = caption_pd.iloc[idx]['caption_triples']
sub_caption_str = caption_pd.iloc[idx]['caption_triples_ls']
# sub_captions = decompose_single_query(sub_caption_str)
if pd.isnull(caption_pd.iloc[idx]['caption_triples_ls']) or redecompose:
sub_caption_str=obtain_response_from_openai(dataset_name="flickr", query=caption)
caption_pd.at[idx, "caption_triples_ls"] = sub_caption_str
else:
sub_caption_str = caption_pd.iloc[idx]['caption_triples_ls']
sub_captions = decompose_single_query_ls(sub_caption_str)
query_paritions_str = caption_pd.iloc[idx]['groups']
grouped_sub_q_ids_ls = decompose_single_query_parition_groups(sub_captions, query_paritions_str)
print(sub_captions)
# img_ls.append(img)
img_idx_ls.append(image_idx)
caption_ls.append(caption)
sub_caption_ls.append(sub_captions)
all_grouped_sub_q_ids_ls.append(grouped_sub_q_ids_ls)
if subset_img_id is None:
return caption_ls, img_file_name_ls, sub_caption_ls, img_idx_ls, all_grouped_sub_q_ids_ls
else:
print(sub_caption_ls[subset_img_id])
return [caption_ls[subset_img_id]], [img_file_name_ls[subset_img_id]], [sub_caption_ls[subset_img_id]], [img_idx_ls[subset_img_id]], [all_grouped_sub_q_ids_ls[subset_img_id]]
# return caption_ls, img_file_name_ls, sub_caption_ls, img_idx_ls, all_grouped_sub_q_ids_ls
def load_flickr_dataset_full(data_path, query_path, subset_img_id=None, redecompose=False, total_count = 1000, algebra_method="five"):
# img_caption_file_name= os.path.join(query_path, "prod_hard_negatives/prod_vg_hard_negs_swap_all4.csv")
# img_caption_file_name= os.path.join(query_path, "sub_queries.csv")
selected_query_file = os.path.join(data_path, "flickr_500_choose.csv")
query_df = pd.read_csv(selected_query_file)
df = pd.read_csv(os.path.join(data_path, 'flickr_annotations_30k.csv'))
# selected_filename = "1000092795.jpg"
# selected_filename = "10002456.jpg"
# selected_filename = "125272627.jpg"
# selected_filename = "1000366164.jpg"
selected_img_idx = 30 #df[df['filename'] == selected_filename].index[0]
# full_query = "Two men in Germany jumping over a rail at the same time without shirts."
# full_query = "Several women are gather around a table in a corner surrounded by bookshelves."
# selected_img_idx = 11
image_path_11 = os.path.join(data_path, "flickr30k-images/") + query_df.iloc[selected_img_idx]['filename']
full_query = query_df.iloc[selected_img_idx]['choose']
origin_file_idx = df[df['filename'] == query_df.iloc[selected_img_idx]['filename']].index[0]
print("full origin query::", full_query)
print("selected image::", query_df.iloc[selected_img_idx]['filename'])
print("origin file idx::", origin_file_idx)
if algebra_method == "five":
root = TreeNode(0, full_query, 'root', 1)
child1 = TreeNode(1, 'a table in a corner', 'plain', 1)
child2 = TreeNode(2, 'a corner surrounded by bookshelves', 'plain', 1)
child3 = TreeNode(3, 'One woman is gathered around a table', 'count', 2)
child4 = TreeNode(4, 'One woman is gathered around a table', 'plain', 1)
tree_11 = Tree(root)
tree_11.add_child(root, child1)
tree_11.add_child(root, child2)
tree_11.add_child(root, child3)
tree_11.add_child(child3, child4)
# root = TreeNode(0, 'Several men in hard hats are operating a giant pulley system.', 'root', 1)
# child1 = TreeNode(1, 'One man in hard hats are operating a giant pulley system.', 'count', 2)
# child2 = TreeNode(2, 'One man in hard hats', 'plain', 1)
# child3 = TreeNode(3, 'a man is operating a giant pulley system', 'plain', 1)
# # child4 = TreeNode(4, 'One young guy hanging out in the yard', 'plain', 1)
# tree_11 = Tree(root)
# tree_11.add_child(root, child1)
# tree_11.add_child(child1, child2)
# tree_11.add_child(child1, child3)
# tree_11.add_child(child1, child4)
# root = TreeNode(0, 'Two young guys with shaggy hair look at their hands while hanging out in the yard.', 'root', 1)
# child1 = TreeNode(1, 'One young guys with shaggy hair look at their hands while hanging out in the yard.', 'count', 2)
# child2 = TreeNode(2, 'One young guys with shaggy hair', 'plain', 1)
# child3 = TreeNode(3, 'One young guy looks at his hands', 'plain', 1)
# child4 = TreeNode(4, 'One young guy hanging out in the yard', 'plain', 1)
# tree_11 = Tree(root)
# tree_11.add_child(root, child1)
# tree_11.add_child(child1, child2)
# tree_11.add_child(child1, child3)
# tree_11.add_child(child1, child4)
# tree_11.add_child(child1, child5)
# tree_11.add_child(child1, child6)
# root = TreeNode(0, 'Three young men and a young woman wearing sneakers are leaping in midair at the top of a flight of concrete stairs.', 'root', 1)
# child1 = TreeNode(1, 'Three young men wearing sneakers are leaping in midair at the top of a flight of concrete stairs.', 'count', 3)
# child2 = TreeNode(2, 'A young woman wearing sneakers.', 'plain', 1)
# child3 = TreeNode(3, 'A young woman leaping in midair at the top of a flight of concrete stairs.', 'plain', 1)
# # child4 = TreeNode(4, 'A flight of concrete stairs.', 'plain', 1)
# child5 = TreeNode(5, 'A young man wearing sneakers.', 'plain', 1)
# child6 = TreeNode(6, 'A young man leaping in midair at the top of a flight of concrete stairs.', 'plain', 1)
# tree_11 = Tree(root)
# tree_11.add_child(root, child1)
# tree_11.add_child(root, child3)
# tree_11.add_child(root, child2)
# # tree_11.add_child(root, child4)
# tree_11.add_child(child1, child5)
# tree_11.add_child(child1, child6)
# Display the tree
tree_11.display(tree_11.root)
sub_caption_ls = [[tree_11]]
all_grouped_sub_q_ids_ls = [None]
else:
# sub_caption_ls = [['A young woman wearing sneakers.', 'A young woman leaping in midair at the top of a flight of concrete stairs.', 'Three young men wearing sneakers.', 'Three young men leaping in midair at the top of a flight of concrete stairs.']]
# sub_caption_ls = [['Two young guys with shaggy hair', 'Two young guy looks at his hands', 'Two young guy hanging out in the yard']]
sub_caption_ls = [["Several women are gather around a table","a table in a corner","a corner surrounded by bookshelves"]]
# all_grouped_sub_q_ids_ls = [[[0,1], [2,3]]]
all_grouped_sub_q_ids_ls = [None]
# caption_ls = ["Two young guys with shaggy hair look at their hands while hanging out in the yard."]
caption_ls = [full_query]
img_file_name_ls = [image_path_11]
# img_idx_ls = [df.iloc[11]['filename']]
img_idx_ls = [origin_file_idx]
return caption_ls, img_file_name_ls, sub_caption_ls, img_idx_ls, all_grouped_sub_q_ids_ls
def load_flickr_dataset_full0(data_path, query_path, subset_img_id=None, redecompose=False, total_count = 1000, algebra_method="five"):
# img_caption_file_name= os.path.join(query_path, "prod_hard_negatives/prod_vg_hard_negs_swap_all4.csv")
# img_caption_file_name= os.path.join(query_path, "sub_queries.csv")
selected_query_file_name = "flickr_500_choose.csv"
decomposed_res_file_name = "flickr_500_result.txt"
# simple_decomposed_res_file_name = "flickr_500_simple_decompose_result.txt"
simple_decomposed_res_file_name = "flickr_simple_decompose_result_240928.json"
simple_decomposed_dependency_file_name = "flickr_simple_decompose_dependency_240928.json"
# selected_query_file_name = "flickr_adjust.csv"
# decomposed_res_file_name = "flickr_adjust_result.txt"
# simple_decomposed_res_file_name = "flickr_adjust_simple_decompose_result.txt"
selected_query_file = os.path.join(data_path, selected_query_file_name)
query_df = pd.read_csv(selected_query_file)
df = pd.read_csv(os.path.join(data_path, 'flickr_annotations_30k.csv'))
# selected_filename = "1000092795.jpg"
# selected_filename = "10002456.jpg"
# selected_filename = "125272627.jpg"
# selected_filename = "1000366164.jpg"
sub_caption_ls = []
all_grouped_sub_q_ids_ls = [None]
query_count=100
if subset_img_id is not None:
selected_img_idx = subset_img_id #df[df['filename'] == selected_filename].index[0]
# full_query = "Two men in Germany jumping over a rail at the same time without shirts."
# full_query = "Several women are gather around a table in a corner surrounded by bookshelves."
# selected_img_idx = 11
image_path_11 = os.path.join(data_path, "flickr30k-images/") + query_df.iloc[selected_img_idx]['filename']
full_query = query_df.iloc[selected_img_idx]['choose']
origin_file_idx = df[df['filename'] == query_df.iloc[selected_img_idx]['filename']].index[0]
print("full origin query::", full_query)
print("selected image::", query_df.iloc[selected_img_idx]['filename'])
print("origin file idx::", origin_file_idx)
caption_ls = [full_query]
img_file_name_ls = [image_path_11]
# img_idx_ls = [df.iloc[11]['filename']]
img_idx_ls = [origin_file_idx]
if algebra_method == "five":
decomposed_res_file = os.path.join(data_path, decomposed_res_file_name)
sub_caption_ls = []
line_idx = 0
root = TreeNode(0, full_query, 'root', 1)
# child1 = TreeNode(1, 'One young guys with shaggy hair look at their hands while hanging out in the yard.', 'count', 2)
child1 = TreeNode(1, "One woman is standing", 'count', 2)
child2 = TreeNode(2, 'a bus with buildings behind it', 'plain', 1)
child3 = TreeNode(3, 'One woman is standing', 'plain', 1)
tree = Tree(root)
tree.add_child(root, child1)
tree.add_child(root, child2)
tree.add_child(child1, child3)
root = TreeNode(0, full_query, 'root', 1)
# child1 = TreeNode(1, 'One young guys with shaggy hair look at their hands while hanging out in the yard.', 'count', 2)
child1 = TreeNode(1, "Several women are standing", 'plain', 1)
child2 = TreeNode(2, 'a bus with buildings behind it', 'plain', 1)
# child3 = TreeNode(3, 'One woman is standing', 'plain', 1)
tree2 = Tree(root)
tree2.add_child(root, child1)
tree2.add_child(root, child2)
# root = TreeNode(0, 'Two young guys with shaggy hair look at their hands while hanging out in the yard.', 'root', 1)
# child1 = TreeNode(1, 'One young guys with shaggy hair look at their hands while hanging out in the yard.', 'count', 2)
# child2 = TreeNode(2, 'Two young guys with shaggy hair', 'plain', 1)
# child3 = TreeNode(3, 'Two young guy looks at his hands', 'plain', 1)
# child4 = TreeNode(4, 'Two young guy hanging out in the yard', 'plain', 1)
# tree2 = Tree(root)
# tree2.add_child(root, child1)
# tree2.add_child(child1, child2)
# tree2.add_child(child1, child3)
# tree2.add_child(child1, child4)
# tree_11.add_child(child1, child4)
# with open(decomposed_res_file, 'r') as f:
# for line in f:
# # parsed_nodes = parse_nodes(line)
# # root = build_tree(parsed_nodes, 0)
# # tree = Tree(root)
# # tree_11.display(tree_11.root)
# if line_idx == subset_img_id:
# tree = construct_tree_from_string(line)
sub_caption_ls.append([tree, tree2])
# break
# line_idx += 1
all_grouped_sub_q_ids_ls = None
else:
# sub_caption_ls = [['A young woman wearing sneakers.', 'A young woman leaping in midair at the top of a flight of concrete stairs.', 'Three young men wearing sneakers.', 'Three young men leaping in midair at the top of a flight of concrete stairs.']]
sub_caption_ls = [[['One young guy with shaggy hair', 'One young guy looks at his hands', 'One young guy is hanging out in the yard', 'Two young guys with shaggy hair', 'Two young guys looks at his hands', 'Two young guys is hanging out in the yard']]]
# sub_caption_ls = [["Two women, both wearing glasses","Two women are playing clarinets","an elderly woman is playing a stringed instrument"]]
# sub_caption_ls = [[[full_query]]]
# all_grouped_sub_q_ids_ls = [[[0,1], [2,3]]]
all_grouped_sub_q_ids_ls = None
else:
img_file_name_ls = []
img_idx_ls = []
caption_ls = []
for selected_img_idx in range(query_count):
image_path_11 = os.path.join(data_path, "flickr30k-images/") + query_df.iloc[selected_img_idx]['filename']
origin_file_idx = df[df['filename'] == query_df.iloc[selected_img_idx]['filename']].index[0]
full_query = query_df.iloc[selected_img_idx]['choose']
img_idx_ls.append(origin_file_idx)
img_file_name_ls.append(image_path_11)
caption_ls.append(full_query)
all_grouped_sub_q_ids_ls = None
if algebra_method == "five":
decomposed_res_file = os.path.join(data_path, decomposed_res_file_name)
sub_caption_ls = []
with open(decomposed_res_file, 'r') as f:
for line in f:
tree = construct_tree_from_string(line)
# parsed_nodes = parse_nodes(line)
# root = build_tree(parsed_nodes, 0)
# tree = Tree(root)
# tree_11.display(tree_11.root)
sub_caption_ls.append([tree])
# sub_caption_ls.append([])
if len(sub_caption_ls) == query_count:
break
# else:
decomposed_res_file = os.path.join(data_path, simple_decomposed_res_file_name)
origin_sub_caption_ls = []
with open(decomposed_res_file, 'r') as f:
json_obj = json.load(f)
for line_idx in range(query_count):
decomposed_subqueries = json_obj[str(line_idx+1)]
# sub_caption_ls.append(decomposed_subqueries)
if algebra_method == "five":
# sub_caption_ls[len(origin_sub_caption_ls)][0].decomposed_subqueries = decomposed_subqueries
root = TreeNode(1, caption_ls[len(origin_sub_caption_ls)], 'root', 1)
tree = Tree(root)
for subquery_idx in range(len(decomposed_subqueries[0])):
subquery=decomposed_subqueries[0][subquery_idx]
node = TreeNode(subquery_idx, subquery, 'plain', 1)
tree.add_child(root, node)
sub_caption_ls[len(origin_sub_caption_ls)].append(tree)
origin_sub_caption_ls.append(decomposed_subqueries)
if len(origin_sub_caption_ls) == query_count:
break
decomposed_dependency_res_file = os.path.join(data_path, simple_decomposed_dependency_file_name)
all_grouped_sub_q_ids_ls = []
with open(decomposed_dependency_res_file, 'r') as f:
json_obj = json.load(f)
for line_idx in range(query_count):
decomposed_subqueries_dependency = json_obj[line_idx]
all_sub_query_ids = []
for sub_query_idx in range(len(decomposed_subqueries_dependency[0])):
all_sub_query_ids.extend(decomposed_subqueries_dependency[0][sub_query_idx])
assert len(all_sub_query_ids) == len(origin_sub_caption_ls[line_idx][0])
all_grouped_sub_q_ids_ls.append(decomposed_subqueries_dependency)
if len(all_grouped_sub_q_ids_ls) == query_count:
break
# for line in f:
# decomposed_subqueries = [line.strip().split("|")]
# if algebra_method == "five":
# # sub_caption_ls[len(origin_sub_caption_ls)][0].decomposed_subqueries = decomposed_subqueries
# root = TreeNode(1, caption_ls[len(origin_sub_caption_ls)], 'root', 1)
# tree = Tree(root)
# for subquery_idx in range(len(decomposed_subqueries[0])):
# subquery=decomposed_subqueries[0][subquery_idx]
# node = TreeNode(subquery_idx, subquery, 'plain', 1)
# tree.add_child(root, node)
# sub_caption_ls[len(origin_sub_caption_ls)].append(tree)
# origin_sub_caption_ls.append(decomposed_subqueries)
# if len(origin_sub_caption_ls) == query_count:
# break
if not algebra_method == "five":
sub_caption_ls = origin_sub_caption_ls
# sub_caption_ls = [['A young woman wearing sneakers.', 'A young woman leaping in midair at the top of a flight of concrete stairs.', 'Three young men wearing sneakers.', 'Three young men leaping in midair at the top of a flight of concrete stairs.']]
# sub_caption_ls = [[['One young guy with shaggy hair', 'One young guy looks at his hands', 'One young guy is hanging out in the yard']]]
# sub_caption_ls = [["Two women, both wearing glasses","Two women are playing clarinets","an elderly woman is playing a stringed instrument"]]
# sub_caption_ls = [[[full_query]]]#[["Two young guys with shaggy hair| guys look at their hands| guys hanging out in the yard."]]
# all_grouped_sub_q_ids_ls = [[[0,1], [2,3]]]
# all_grouped_sub_q_ids_ls = None
# root = TreeNode(0, full_query, 'root', 1)
# Two women, both wearing glasses, are playing clarinets and an elderly woman is playing a stringed instrument.
# child1 = TreeNode(1, 'Two women, both wearing glasses, are playing clarinets', 'count', 2)
# child2 = TreeNode(2, 'One women wearing glasses', 'plain', 1)
# child3 = TreeNode(3, 'One women is playing clarinets', 'plain', 1)
# child4 = TreeNode(4, 'an elderly woman is playing a stringed instrument', 'plain', 1)
# # tree_11 = Tree(root)
# # tree_11.add_child(root, child1)
# # tree_11.add_child(root, child4)
# # tree_11.add_child(child1, child2)
# # tree_11.add_child(child1, child3)
# # Several men in hard hats are operating a giant pulley system.
# child1 = TreeNode(1, 'One man in hard hats are operating a giant pulley system', 'count', 2)
# child2 = TreeNode(2, 'One man in hard hats', 'plain', 1)
# child3 = TreeNode(3, 'One man is operating a giant pulley system', 'plain', 1)
# # child4 = TreeNode(4, 'one men standing near a stove', 'plain', 1)
# tree_11 = Tree(root)
# tree_11.add_child(root, child1)
# tree_11.add_child(child1, child2)
# tree_11.add_child(child1, child3)
# tree_11.add_child(child3, child4)
# tree_11.add_child(child1, child3)
# # root = TreeNode(0, 'Several men in hard hats are operating a giant pulley system.', 'root', 1)
# # child1 = TreeNode(1, 'One man in hard hats are operating a giant pulley system.', 'count', 2)
# # child2 = TreeNode(2, 'One man in hard hats', 'plain', 1)
# # child3 = TreeNode(3, 'a man is operating a giant pulley system', 'plain', 1)
# # # child4 = TreeNode(4, 'One young guy hanging out in the yard', 'plain', 1)
# # tree_11 = Tree(root)
# # tree_11.add_child(root, child1)
# # tree_11.add_child(child1, child2)
# # tree_11.add_child(child1, child3)
# # tree_11.add_child(child1, child4)
# # root = TreeNode(0, 'Two young guys with shaggy hair look at their hands while hanging out in the yard.', 'root', 1)
# # child1 = TreeNode(1, 'One young guys with shaggy hair look at their hands while hanging out in the yard.', 'count', 2)
# # child2 = TreeNode(2, 'One young guys with shaggy hair', 'plain', 1)
# # child3 = TreeNode(3, 'One young guy looks at his hands', 'plain', 1)
# # child4 = TreeNode(4, 'One young guy hanging out in the yard', 'plain', 1)
# # tree_11 = Tree(root)
# # tree_11.add_child(root, child1)
# # tree_11.add_child(child1, child2)
# # tree_11.add_child(child1, child3)
# # tree_11.add_child(child1, child4)
# # tree_11.add_child(child1, child5)
# # tree_11.add_child(child1, child6)
# # root = TreeNode(0, 'Three young men and a young woman wearing sneakers are leaping in midair at the top of a flight of concrete stairs.', 'root', 1)
# # child1 = TreeNode(1, 'Three young men wearing sneakers are leaping in midair at the top of a flight of concrete stairs.', 'count', 3)
# # child2 = TreeNode(2, 'A young woman wearing sneakers.', 'plain', 1)
# # child3 = TreeNode(3, 'A young woman leaping in midair at the top of a flight of concrete stairs.', 'plain', 1)
# # # child4 = TreeNode(4, 'A flight of concrete stairs.', 'plain', 1)
# # child5 = TreeNode(5, 'A young man wearing sneakers.', 'plain', 1)
# # child6 = TreeNode(6, 'A young man leaping in midair at the top of a flight of concrete stairs.', 'plain', 1)
# # tree_11 = Tree(root)
# # tree_11.add_child(root, child1)
# # tree_11.add_child(root, child3)
# # tree_11.add_child(root, child2)
# # # tree_11.add_child(root, child4)
# # tree_11.add_child(child1, child5)
# # tree_11.add_child(child1, child6)
# # Display the tree
# tree_11.display(tree_11.root)
# sub_caption_ls = [[tree_11]]
# all_grouped_sub_q_ids_ls = [None]
# caption_ls = ["Two young guys with shaggy hair look at their hands while hanging out in the yard."]
return caption_ls, img_file_name_ls, sub_caption_ls, img_idx_ls, all_grouped_sub_q_ids_ls
# if total_count < 0:
# img_caption_file_name= os.path.join(query_path, "full_queries.csv")
# else:
# img_caption_file_name= os.path.join(query_path, "full_queries_" + str(total_count) + ".csv")
# is_full_query_file = True
# if not os.path.exists(img_caption_file_name):
# is_full_query_file = False
# img_caption_file_name= os.path.join(query_path, "results_20130124.token")
# caption_pd = pd.read_csv(img_caption_file_name, sep="\t")
# else:
# caption_pd = pd.read_csv(img_caption_file_name)
# img_folder = os.path.join(data_path, "flickr30k-images/")
# # img_folder2 = os.path.join(data_path, "VG_100K_2/")
# if not is_full_query_file:
# header_names = ["image_id", "caption"]
# else:
# # if len(caption_pd.columns) == 3:
# header_names = ["image_id", "caption", "caption_triples_ls", "groups"]
# caption_pd.columns = header_names[0:len(caption_pd.columns)]
# # img_ls = []
# img_idx_ls = []
# caption_ls = []
# sub_caption_ls = []
# img_file_name_ls = []
# all_grouped_sub_q_ids_ls = []
# if 'caption_triples_ls' not in caption_pd.columns:
# caption_pd['caption_triples_ls'] = np.nan
# if "groups" not in caption_pd.columns:
# caption_pd['groups'] = np.nan
# for idx in tqdm(range(len(caption_pd))):
# image_idx = caption_pd.iloc[idx]['image_id']
# image_idx = image_idx.split("#")[0]
# if image_idx in img_idx_ls:
# continue
# full_img_file_name = os.path.join(img_folder, str(image_idx))
# # if not os.path.exists(full_img_file_name):
# # full_img_file_name = os.path.join(img_folder2, str(image_idx) + ".jpg")
# if not os.path.exists(full_img_file_name):
# continue
# img_file_name_ls.append(full_img_file_name)
# # img = Image.open(full_img_file_name)
# # img = img.convert('RGB')
# caption = caption_pd.iloc[idx]['caption']
# # sub_caption_str = caption_pd.iloc[idx]['caption_triples']
# sub_caption_str = caption_pd.iloc[idx]['caption_triples_ls']
# # sub_captions = decompose_single_query(sub_caption_str)
# if pd.isnull(caption_pd.iloc[idx]['caption_triples_ls']) or redecompose:
# sub_caption_str=obtain_response_from_openai(dataset_name="flickr", query=caption)
# sub_caption_str_ls = sub_caption_str.split("|")
# segmented_sub_caption_str_ls = []
# for sub_caption_str in sub_caption_str_ls:
# segmented_sub_caption_str_ls.append(obtain_response_from_openai(dataset_name="flickr_two", query=sub_caption_str))
# sub_caption_str = "|".join(segmented_sub_caption_str_ls)
# caption_pd.at[idx, "caption_triples_ls"] = sub_caption_str
# else:
# sub_caption_str = caption_pd.iloc[idx]['caption_triples_ls']
# sub_captions = decompose_single_query_ls(sub_caption_str)
# query_paritions_str = caption_pd.iloc[idx]['groups']
# grouped_sub_q_ids_ls = decompose_single_query_parition_groups(sub_captions, query_paritions_str)
# print(sub_captions)
# # img_ls.append(img)
# img_idx_ls.append(image_idx)
# caption_ls.append(caption)
# sub_caption_ls.append(sub_captions)
# all_grouped_sub_q_ids_ls.append(grouped_sub_q_ids_ls)
# if total_count > 0 and len(img_file_name_ls) >= total_count:
# break
# caption_pd.to_csv(img_caption_file_name, index=False)
# if subset_img_id is None:
# return caption_ls, img_file_name_ls, sub_caption_ls, img_idx_ls, all_grouped_sub_q_ids_ls
# else:
# print(sub_caption_ls[subset_img_id])
# return [caption_ls[subset_img_id]], [img_file_name_ls[subset_img_id]], [sub_caption_ls[subset_img_id]], [img_idx_ls[subset_img_id]], [all_grouped_sub_q_ids_ls[subset_img_id]]
# return caption_ls, img_file_name_ls, sub_caption_ls, img_idx_ls, all_grouped_sub_q_ids_ls
def load_sharegpt4v_datasets(data_path, query_path):
# img_caption_file_name = query_path
# with open(img_caption_file_name, 'rb') as f:
# caption_pd = pickle.load(f)
caption_pd = pd.read_csv(os.path.join(query_path, "sharegpt_query_20.csv"))
img_file_name_ls = []
img_idx_ls = []
caption_ls = []
sub_caption_ls = []
for idx in range(len(caption_pd)):
image_idx = caption_pd.iloc[idx]['id']
if image_idx in img_idx_ls:
continue
img_path = caption_pd.iloc[idx]['image']
#image_dir is the directory in which the root folder for the main image files are located, in this case in train2017 folder
# image_dir = '/content/unzipped_images/train2017/train2017/'
img_final_path = os.path.join(data_path, "images/train2017/", img_path)
caption = caption_pd.iloc[idx]['caption_sharegpt4v']
sub_caption_str = caption_pd.iloc[idx]['caption_triples_ls']
sub_captions = decompose_single_query_ls(sub_caption_str)
img_file_name_ls.append(img_final_path)
img_idx_ls.append(image_idx)
caption_ls.append(caption)
sub_caption_ls.append(sub_captions)
return caption_ls, img_file_name_ls, sub_caption_ls, img_idx_ls
def init_blip_captioning_model():
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
return model, processor
def load_mscoco_text_datasets(data_path, query_path, img_idx_ls, cached_caption_file_name="mscoco40k_blip_captioning.pkl", data_file_name="mscoco_40kdecomposed_dependencies_wholeexp.pkl"):
# img_caption_file_name = query_path
# with open(img_caption_file_name, 'rb') as f:
# caption_pd = pickle.load(f)
cached_blip_caption_file_name = os.path.join(query_path, cached_caption_file_name)
if os.path.exists(cached_blip_caption_file_name):
img_idx_caption_text_mappings = utils.load(cached_blip_caption_file_name)
caption_text_ls=[]
for img_id in tqdm(img_idx_ls, desc="Loading captions"):
caption_text_ls.append(img_idx_caption_text_mappings[img_id])
return caption_text_ls
else:
caption_pd = utils.load(os.path.join(data_path, data_file_name))
caption_text_ls = []
img_idx_caption_text_mappings = dict()
model, processor = init_blip_captioning_model()
for img_id in tqdm(img_idx_ls, desc="Loading captions"):
img_file_name = os.path.join(data_path, "images/train2017/", caption_pd[caption_pd['id'] == img_id]["image"].values[0])
raw_image = Image.open(img_file_name).convert('RGB')
# conditional image captioning
text = "a photography of"
inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs)
curr_text = processor.decode(out[0], skip_special_tokens=True)
# curr_text = list(caption_pd[caption_pd['id'] == img_id]["caption_sharegpt4v"])[0]
caption_text_ls.append(curr_text)
img_idx_caption_text_mappings[img_id] = curr_text
utils.save(img_idx_caption_text_mappings, cached_blip_caption_file_name)
return caption_text_ls
def load_mscoco_datasets_from_cached_files(data_path, query_path):
# img_caption_file_name = query_path
# with open(img_caption_file_name, 'rb') as f:
# caption_pd = pickle.load(f)
caption_pd = utils.load(os.path.join(query_path, "mscoco_40kdecomposed_dependencies_wholeexp.pkl"))
# caption_pd = pd.read_csv(os.path.join(query_path, "sharegpt_query_20.csv"))
img_file_name_ls = []
img_idx_ls = []
caption_ls = []
sub_caption_ls = []
all_grouped_sub_q_ids_ls = []
# if 'caption_triples_ls' not in caption_pd.columns:
# caption_pd['caption_triples_ls'] = np.nan
# if "groups" not in caption_pd.columns:
# caption_pd['groups'] = np.nan
for idx in tqdm(range(len(caption_pd))):
image_idx = caption_pd.iloc[idx]['id']
if image_idx in img_idx_ls:
continue
img_path = caption_pd.iloc[idx]['image']
#image_dir is the directory in which the root folder for the main image files are located, in this case in train2017 folder
# image_dir = '/content/unzipped_images/train2017/train2017/'
img_final_path = os.path.join(data_path, "images/train2017/", img_path)
caption = caption_pd.iloc[idx]['caption_sharegpt4v']
sub_caption_str = caption_pd.iloc[idx]['caption_triples_ls']
sub_captions = decompose_single_query_ls(sub_caption_str)
query_paritions_str = caption_pd.iloc[idx]['groups']
grouped_sub_q_ids_ls = decompose_single_query_parition_groups(sub_captions, query_paritions_str)
img_file_name_ls.append(img_final_path)
img_idx_ls.append(image_idx)
caption_ls.append(caption)
sub_caption_ls.append(sub_captions)
all_grouped_sub_q_ids_ls.append(grouped_sub_q_ids_ls)
return caption_ls, img_file_name_ls, sub_caption_ls, img_idx_ls, all_grouped_sub_q_ids_ls
def load_mscoco_120k_datasets_from_cached_files(data_path, query_path):
# img_caption_file_name = query_path
# with open(img_caption_file_name, 'rb') as f:
# caption_pd = pickle.load(f)
# caption_pd = utils.load(os.path.join(query_path, "mscoco_120kdecomposed_wholeexp.pkl"))
caption_pd = utils.load(os.path.join(query_path, "sharegpt4v_random_1000_queries.pkl"))
# caption_pd = pd.read_csv(os.path.join(query_path, "sharegpt_query_20.csv"))
img_file_name_ls = []
img_idx_ls = []
caption_ls = []
sub_caption_ls = []
all_grouped_sub_q_ids_ls = []
# if 'caption_triples_ls' not in caption_pd.columns:
# caption_pd['caption_triples_ls'] = np.nan
# if "groups" not in caption_pd.columns:
# caption_pd['groups'] = np.nan
for idx in tqdm(range(len(caption_pd))):
image_idx = caption_pd.iloc[idx]['id']
if image_idx in img_idx_ls:
continue
img_path = caption_pd.iloc[idx]['image']
#image_dir is the directory in which the root folder for the main image files are located, in this case in train2017 folder
# image_dir = '/content/unzipped_images/train2017/train2017/'
img_final_path = os.path.join(data_path, "images/train2017/", img_path)
caption = caption_pd.iloc[idx]['caption_sharegpt4v']
try:
sub_caption_str = caption_pd.iloc[idx]['sentence_decompositions']
sub_captions = decompose_single_query_ls(sub_caption_str)
query_paritions_str = caption_pd.iloc[idx]['sentence_level_groups']
grouped_sub_q_ids_ls = decompose_single_query_parition_groups(sub_captions, query_paritions_str)
img_file_name_ls.append(img_final_path)
img_idx_ls.append(image_idx)
caption_ls.append(caption)
sub_caption_ls.append(sub_captions)
all_grouped_sub_q_ids_ls.append(None)#(grouped_sub_q_ids_ls)
except:
pass
return caption_ls, img_file_name_ls, sub_caption_ls, img_idx_ls, all_grouped_sub_q_ids_ls
def load_other_sharegpt4v_mscoco_images(dataset_path, img_idx_ls, img_file_name_ls, total_count):
#query_path = '/content/drive/MyDrive/'
#img_caption_file_name = os.path.join(query_path, "sharegpt4v_mscoco_image_paths.pkl")
# img_caption_file_name = dataset_path
img_caption_file_name = os.path.join(dataset_path, "mscoco_120k.pkl")
with open(img_caption_file_name, 'rb') as f:
caption_pd = pickle.load(f)
if total_count > 0 and len(img_file_name_ls) >= total_count:
return img_idx_ls, img_file_name_ls
for idx in tqdm(range(len(caption_pd))):
image_idx = caption_pd.iloc[idx]['id']
if image_idx in img_idx_ls:
continue
img_path = caption_pd.iloc[idx]['image']
#image_dir is the directory in which the root folder for the main image files are located, in this case in train2017 folder
# image_dir = '/content/unzipped_images/train2017/train2017/'
image_dir = os.path.join(dataset_path, "images/train2017/")
img_final_path = os.path.join(image_dir, img_path)
img_file_name_ls.append(img_final_path)
img_idx_ls.append(image_idx)