forked from wenbowen123/iros20-6d-pose-tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_ros.py
120 lines (96 loc) · 4.26 KB
/
predict_ros.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import ros,rospy
import os,sys,cv2,glob,copy,yaml,time,argparse
sys.path.append('/root/catkin_ws/src')
code_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(code_dir)
import numpy as np
import yaml
import geometry.tf.src.tf as tf
from transformations import *
from rospy import Time
from std_srvs.srv import Empty, EmptyResponse
from std_msgs.msg import Float64MultiArray, Float32MultiArray
from sensor_msgs.msg import CameraInfo, Image
from cv_bridge import CvBridge
from Utils import *
from data_augmentation import *
from predict import Tracker
class TrackerRos:
def __init__(self,tracker,pose_init):
self.tracker = tracker
self.color = None
self.depth = None
self.cur_time = None
self.sub_depth = rospy.Subscriber(args.rgb_topic, Image, self.grab_depth)
self.sub_color = rospy.Subscriber(args.depth_topic, Image, self.grab_color)
self.listener = tf.listener.TransformListener()
self.tf_pub = tf.broadcaster.TransformBroadcaster()
self.A_in_cam = pose_init.copy()
def reset(self,pose_init):
self.color = None
self.depth = None
self.cur_time = None
self.A_in_cam = pose_init.copy()
def grab_depth(self,msg):
depth = CvBridge().imgmsg_to_cv2(msg, desired_encoding="passthrough").astype(np.uint16)
depth = fill_depth(depth/1e3,max_depth=2.0,extrapolate=False)
self.depth = (depth*1000).astype(np.uint16)
def grab_color(self,msg):
self.cur_time = msg.header.stamp
color = CvBridge().imgmsg_to_cv2(msg, desired_encoding="bgr8")
self.color = cv2.cvtColor(color, cv2.COLOR_BGR2RGB)
def on_track(self):
if self.color is None:
print('color is None')
return
if self.depth is None:
print('depth is None')
return
if self.cur_time is None:
print('self.cur_time is None')
return
ob_in_cam = self.tracker.on_track(self.A_in_cam,self.color.astype(np.uint8), self.depth, gt_A_in_cam=np.eye(4),gt_B_in_cam=np.eye(4), debug=False, debug_time=False,samples=1)
self.A_in_cam = ob_in_cam.copy()
trans = ob_in_cam[:3,3]
q_wxyz = quaternion_from_matrix(ob_in_cam)
q_xyzw = [q_wxyz[1],q_wxyz[2],q_wxyz[3],q_wxyz[0]]
self.tf_pub.sendTransform(trans, q_xyzw, self.cur_time, args.object_frame_name,args.camera_frame_name)
if __name__=="__main__":
rospy.init_node('my_node', anonymous=True)
code_dir = os.path.dirname(os.path.realpath(__file__))
parser = argparse.ArgumentParser()
parser.add_argument('--artifact_id', type=int, default=772)
parser.add_argument('--pose_init_file', type=str, default=f"{code_dir}/pose_init.txt")
parser.add_argument('--rgb_topic', type=str, default='/camera/color/image_raw')
parser.add_argument('--depth_topic', type=str, default='/camera/aligned_depth_to_color/image_raw')
parser.add_argument('--artifacts_folder', type=str, default='/media/bowen/56c8da60-8656-47c3-b940-e928a3d4ec3b/artifacts_se3_tracknet')
parser.add_argument('--camera_frame_name', type=str, default='/camera_color_optical_frame')
parser.add_argument('--object_frame_name', type=str, default='/ob')
args = parser.parse_args()
artifact_dir = f'{args.artifacts_folder}/artifacts-{args.artifact_id}'
ckpt_dir = '{}/model_best_val.pth.tar'.format(artifact_dir)
config_path = '{}/code_backup{}/config.yml'.format(artifact_dir,args.artifact_id)
mean_std_path = artifact_dir
print('ckpt_dir:',ckpt_dir)
with open(config_path, 'r') as ff:
config = yaml.safe_load(ff)
dataset_info_path = f"{artifact_dir}/code_backup{args.artifact_id}/dataset_info.yml"
print('dataset_info_path',dataset_info_path)
with open(dataset_info_path,'r') as ff:
dataset_info = yaml.safe_load(ff)
images_mean = np.load(os.path.join(mean_std_path, "mean.npy"))
images_std = np.load(os.path.join(mean_std_path, "std.npy"))
print('images_mean',images_mean)
print('images_std',images_std)
debug = False
pose_init = args.pose_init_file
print('pose_init:\n',pose_init)
tracker = Tracker(dataset_info, images_mean, images_std,ckpt_dir,trans_normalizer=dataset_info['max_translation'],rot_normalizer=dataset_info['max_rotation'])
ros_tracker = TrackerRos(tracker,pose_init=pose_init)
rate = rospy.Rate(60.0)
while not rospy.is_shutdown():
try:
ros_tracker.on_track()
except Exception as e:
print('ERROR: {}'.format(e))
rate.sleep()