-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvec3.h
142 lines (109 loc) · 3.11 KB
/
vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#ifndef VEC3_H
#define VEC3_H
#include <cmath>
#include <iostream>
#include <fstream>
class vec3{
public:
double x , y , z;
public:
//default constructor initialises to 0
vec3() : x(0) , y(0) , z(0) {}
//paramaterised constructor
vec3(double X , double Y , double Z) : x(X) , y(Y) , z(Z){}
double getX() const { return x; }
double getY() const { return y; }
double getZ() const { return z; }
vec3 operator-() const{
return vec3(-x , -y , -z);
}
vec3& operator+= (const vec3 *v){
x += v->x;
y += v->y;
z += v->z;
return *this;
}
vec3 &operator*=(const double t) {
x *= t;
y *= t;
z *= t;
return *this;
}
vec3& operator/=(const double t){
return (*this) *= 1/t;
}
double length() const{
return std::sqrt(x*x + y*y + z*z);
}
double length_sq() const{
return (x*x + y*y + z*z);
}
//random point
inline static vec3 random(void){
return vec3(random_double() , random_double() , random_double());
}
//random point in range
inline static vec3 random(double min , double max){
return vec3(random_double(min,max) , random_double(min,max) , random_double(min,max));
}
bool near_zero(void) const{
const auto s = 1e-8;
return (fabs(x) < s) && (fabs(y) < s) && (fabs(z) < s);
}
};
inline std::ostream& operator<<(std::ostream &out , const vec3 &v){
return out << v.x << ' ' << v.y << ' ' << v.z ;
}
inline vec3 operator+(const vec3 &u , const vec3 &v){
return vec3(u.x + v.x, u.y + v.y, u.z + v.z);
}
inline vec3 operator-(const vec3 &u, const vec3 &v){
return vec3(u.x - v.x, u.y - v.y, u.z - v.z);
}
inline vec3 operator*(const vec3 &u, const vec3 &v){
return vec3(u.x * v.x, u.y * v.y, u.z * v.z);
}
inline vec3 operator*(const vec3 &v , double t){
return vec3(v.x * t , v.y * t , v.z * t);
}
inline vec3 operator*(double t , const vec3 &v ){
return v * t;
}
inline vec3 operator/(const vec3 &v , double t){
return v * (1/t) ;
}
inline double dot(const vec3 &u , const vec3 &v){
return u.x * v.x + u.y * v.y + u.z * v.z ;
}
inline vec3 cross(const vec3 &u , const vec3 &v){
return vec3(u.y*v.z - v.y*u.z , v.x*u.z - u.x*v.z , u.x*v.y - v.x*u.y);
}
inline vec3 unit_vector(const vec3 &v){
return v / v.length();
}
inline vec3 random_in_unit_sphere(void){
while(true){
vec3 p = vec3 :: random(-1,1); // get a random point in unit cube
if(p.length_sq() >= 1) continue; //check if in sphere
else return p; // if yes then return the point
}
}
inline vec3 random_unit_vector(){
return unit_vector(random_in_unit_sphere());
}
inline vec3 random_in_hemisphere (const vec3 &normal) {
vec3 in_unit_sphere = random_in_unit_sphere();
if(dot(in_unit_sphere , normal) > 0.0) return in_unit_sphere;
else return -in_unit_sphere;
}
inline vec3 reflect(const vec3 &v , const vec3 &n){
return v - 2*dot(v,n)*n;
}
inline vec3 refract(const vec3 &i , const vec3 &n , double &ratio){
double cos_i = fmin(dot(i,n),1.0);
double c2 = sqrt(1-(ratio*ratio)*(1-(cos_i*cos_i)));
return ratio*i + (ratio*cos_i - c2)*n;
}
using point3 = vec3;
using color = vec3;
#endif