forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcount-of-smaller-numbers-after-self.py
164 lines (147 loc) · 5.1 KB
/
count-of-smaller-numbers-after-self.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Time: O(nlogn)
# Space: O(n)
# You are given an integer array nums and you have to
# return a new counts array. The counts array has the
# property where counts[i] is the number of smaller
# elements to the right of nums[i].
#
# Example:
#
# Given nums = [5, 2, 6, 1]
#
# To the right of 5 there are 2 smaller elements (2 and 1).
# To the right of 2 there is only 1 smaller element (1).
# To the right of 6 there is 1 smaller element (1).
# To the right of 1 there is 0 smaller element.
# Return the array [2, 1, 1, 0].
# Divide and Conquer solution.
class Solution(object):
def countSmaller(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
def countAndMergeSort(num_idxs, start, end, counts):
if end - start <= 0: # The size of range [start, end] less than 2 is always with count 0.
return 0
mid = start + (end - start) / 2
countAndMergeSort(num_idxs, start, mid, counts)
countAndMergeSort(num_idxs, mid + 1, end, counts)
r = mid + 1
tmp = []
for i in xrange(start, mid + 1):
# Merge the two sorted arrays into tmp.
while r <= end and num_idxs[r][0] < num_idxs[i][0]:
tmp.append(num_idxs[r])
r += 1
tmp.append(num_idxs[i])
counts[num_idxs[i][1]] += r - (mid + 1)
# Copy tmp back to num_idxs
num_idxs[start:start+len(tmp)] = tmp
num_idxs = []
counts = [0] * len(nums)
for i, num in enumerate(nums):
num_idxs.append((num, i))
countAndMergeSort(num_idxs, 0, len(num_idxs) - 1, counts)
return counts
# Time: O(nlogn)
# Space: O(n)
# BIT solution.
class Solution2(object):
def countSmaller(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
def binarySearch(A, target, compare):
start, end = 0, len(A) - 1
while start <= end:
mid = start + (end - start) / 2
if compare(target, A[mid]):
end = mid - 1
else:
start = mid + 1
return start
class BIT(object):
def __init__(self, n):
self.__bit = [0] * n
def add(self, i, val):
while i < len(self.__bit):
self.__bit[i] += val
i += (i & -i)
def query(self, i):
ret = 0
while i > 0:
ret += self.__bit[i]
i -= (i & -i)
return ret
# Get the place (position in the ascending order) of each number.
sorted_nums, places = sorted(nums), [0] * len(nums)
for i, num in enumerate(nums):
places[i] = binarySearch(sorted_nums, num, lambda x, y: x <= y)
# Count the smaller elements after the number.
ans, bit= [0] * len(nums), BIT(len(nums) + 1)
for i in reversed(xrange(len(nums))):
ans[i] = bit.query(places[i])
bit.add(places[i] + 1, 1)
return ans
# Time: O(nlogn)
# Space: O(n)
# BST solution.
class Solution3(object):
def countSmaller(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
res = [0] * len(nums)
bst = self.BST()
# Insert into BST and get left count.
for i in reversed(xrange(len(nums))):
bst.insertNode(nums[i])
res[i] = bst.query(nums[i])
return res
class BST(object):
class BSTreeNode(object):
def __init__(self, val):
self.val = val
self.count = 0
self.left = self.right = None
def __init__(self):
self.root = None
# Insert node into BST.
def insertNode(self, val):
node = self.BSTreeNode(val)
if not self.root:
self.root = node
return
curr = self.root
while curr:
# Insert left if smaller.
if node.val < curr.val:
curr.count += 1 # Increase the number of left children.
if curr.left:
curr = curr.left;
else:
curr.left = node;
break
else: # Insert right if larger or equal.
if curr.right:
curr = curr.right
else:
curr.right = node
break
# Query the smaller count of the value.
def query(self, val):
count = 0
curr = self.root
while curr:
# Insert left.
if val < curr.val:
curr = curr.left
elif val > curr.val:
count += 1 + curr.count # Count the number of the smaller nodes.
curr = curr.right
else: # Equal.
return count + curr.count
return 0