forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrepeated-string-match.py
53 lines (45 loc) · 1.54 KB
/
repeated-string-match.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Time: O(n + m)
# Space: O(1)
# Given two strings A and B, find the minimum number of times A has to be repeated
# such that B is a substring of it. If no such solution, return -1.
#
# For example, with A = "abcd" and B = "cdabcdab".
#
# Return 3, because by repeating A three times (“abcdabcdabcd”), B is a substring of it;
# and B is not a substring of A repeated two times ("abcdabcd").
#
# Note:
# The length of A and B will be between 1 and 10000.
# Rabin-Karp Algorithm (rolling hash)
class Solution(object):
def repeatedStringMatch(self, A, B):
"""
:type A: str
:type B: str
:rtype: int
"""
def check(index):
return all(A[(i+index) % len(A)] == c
for i, c in enumerate(B))
M, p = 10**9+7, 113
p_inv = pow(p, M-2, M)
q = (len(B)+len(A)-1) // len(A)
b_hash, power = 0, 1
for c in B:
b_hash += power * ord(c)
b_hash %= M
power = (power*p) % M
a_hash, power = 0, 1
for i in xrange(len(B)):
a_hash += power * ord(A[i%len(A)])
a_hash %= M
power = (power*p) % M
if a_hash == b_hash and check(0): return q
power = (power*p_inv) % M
for i in xrange(len(B), (q+1)*len(A)):
a_hash = (a_hash-ord(A[(i-len(B))%len(A)])) * p_inv
a_hash += power * ord(A[i%len(A)])
a_hash %= M
if a_hash == b_hash and check(i-len(B)+1):
return q if i < q*len(A) else q+1
return -1