-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain3.py
393 lines (316 loc) · 16 KB
/
main3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import sys
import torch
import numpy as np
from torch.utils.data import DataLoader
from customized_dataset import MyDatasetSep as MyDataset
from customized_dataset import KFoldSep as KFold
from logger import Logger
from models.dann import DANN
from tqdm.auto import tqdm
from datetime import date
import os
import wandb
GDSC_TENSOR_PATH = './data/tensors/gdsc/'
CCLE_TENSOR_PATH = './data/tensors/ccle/'
WEIGHTS_PATH = './data/weights/'
LOGGER_PATH = './results/'
loss_regression = torch.nn.MSELoss()
loss_domain = torch.nn.NLLLoss()
use_wandb = False
use_local_logger = True
@torch.no_grad()
def compute_batch_xs_xt(x1s, x2s, x1t, x2t):
s_len = x1s.shape[0]
t_len = x1t.shape[0]
xs, xt = torch.zeros((s_len, x1s.shape[1] + x2s.shape[1])), torch.zeros((t_len, x1s.shape[1] + x2s.shape[1]))
for j in range(s_len):
xs[j] = torch.cat((x1s[j], x2s[j]))
for j in range(t_len):
xt[j] = torch.cat((x1t[j], x2t[j]))
return xs, xt
@torch.no_grad()
def normalization(t, prev_min, prev_max, new_min=0, new_max=1):
return (t - prev_min) / (prev_max - prev_min) * (new_max - new_min) + new_min
@torch.no_grad()
def standardization(t, mean, std):
return (t - mean) / std
def train(s_train_loader, t_train_loader, model, optimizer, batch_size, epoch, epochs,
tr_s_x1_mm_tuple, tr_s_x2_mm_tuple, tr_t_x1_mm_tuple, tr_t_x2_mm_tuple, logger, is_parallel):
s_t_loader = tqdm(enumerate(s_train_loader), total=len(s_train_loader))
t_t_loader = tqdm(enumerate(t_train_loader), total=len(t_train_loader))
len_dataloader = min(len(s_t_loader), len(t_t_loader))
loss_total_fin, loss_t_domain_fin, mse_fin = 0, 0, 0
for (i, (x1s, x2s, ys)), (_, (x1t, x2t, dyt)) in zip(s_t_loader, t_t_loader):
s_len = x1s.shape[0]
p = float(i + epoch * len_dataloader) / epochs / len_dataloader
alpha = 2. / (1. + np.exp(-10 * p)) - 1
# TODO
dys = torch.zeros((s_len, 2))
dys[:, 0] = 1
# xs, xt = compute_batch_xs_xt(normalization(x1s, tr_s_x1_mm_tuple[0], tr_s_x1_mm_tuple[1]),
# normalization(x2s, tr_s_x2_mm_tuple[0], tr_s_x2_mm_tuple[1]),
# normalization(x1t, tr_t_x1_mm_tuple[0], tr_t_x1_mm_tuple[1]),
# normalization(x2t, tr_t_x2_mm_tuple[0], tr_t_x2_mm_tuple[1]))
xs, xt = compute_batch_xs_xt(standardization(x1s, tr_s_x1_mm_tuple[0], tr_s_x1_mm_tuple[1]),
normalization(x2s, tr_s_x2_mm_tuple[0], tr_s_x2_mm_tuple[1]),
standardization(x1t, tr_t_x1_mm_tuple[0], tr_t_x1_mm_tuple[1]),
normalization(x2t, tr_t_x2_mm_tuple[0], tr_t_x2_mm_tuple[1]))
dys, dyt = dys.to(torch.int64), dyt.to(torch.int64)
if torch.cuda.is_available():
dys, dyt = dys.to(torch.int64), dyt.to(torch.int64)
xs, ys, dys, xt, dyt = xs.to(0), ys.to(0), dys.to(0), xt.to(0), dyt.to(0)
model.zero_grad()
# print('xs', xs.shape)
# print('xt', xt.shape)
# print('CUDA MEM ALLOCATED CKPT 1: ', torch.cuda.memory_allocated())
# print('CUDA MEM RESERVED CKPT 1: ', torch.cuda.memory_reserved())
# if torch.cuda.is_available():
# xs = xs.to(0)
# print('CUDA MEM ALLOCATED CKPT 2: ', torch.cuda.memory_allocated())
# print('CUDA MEM RESERVED CKPT 2: ', torch.cuda.memory_reserved())
regression_pred, domain_pred = model(xs, alpha)
# print('CUDA MEM ALLOCATED CKPT 3: ', torch.cuda.memory_allocated())
# print('CUDA MEM RESERVED CKPT 3: ', torch.cuda.memory_reserved())
# if torch.cuda.is_available():
# del xs
# torch.cuda.empty_cache()
# print('CUDA MEM ALLOCATED CKPT 4: ', torch.cuda.memory_allocated())
# print('CUDA MEM RESERVED CKPT 4: ', torch.cuda.memory_reserved())
# print('rp', regression_pred.shape)
# print('dp', domain_pred.shape)
# print('ys', ys.view(-1, 1).shape)
# if torch.cuda.is_available():
# ys = ys.to(0)
loss_s_label = loss_regression(regression_pred, ys.view(-1, 1))
# if torch.cuda.is_available():
# del regression_pred
# del ys
# torch.cuda.empty_cache()
# if torch.cuda.is_available():
# dys = dys.to(0)
loss_s_domain = loss_domain(domain_pred, dys[:, 1])
# if torch.cuda.is_available():
# del domain_pred
# del dys
# torch.cuda.empty_cache()
#
# print('CUDA MEM ALLOCATED CKPT 3: ', torch.cuda.memory_allocated())
# print('CUDA MEM RESERVED CKPT 3: ', torch.cuda.memory_reserved())
# if torch.cuda.is_available():
# xt = xt.to(0)
_, domain_pred = model(xt, alpha)
# if torch.cuda.is_available():
# del xt
# torch.cuda.empty_cache()
#
# if torch.cuda.is_available():
# dyt = dyt.to(0)
loss_t_domain = loss_domain(domain_pred, dyt[:, 1])
# if torch.cuda.is_available():
# del domain_pred
# del dyt
# torch.cuda.empty_cache()
loss = loss_s_label + loss_s_domain + loss_t_domain
if is_parallel > 1:
loss.mean().backward()
loss_total_fin += loss.mean()
loss_t_domain_fin += loss_t_domain.mean()
mse_fin += loss_s_label.mean()
else:
loss.backward()
loss_total_fin += loss
loss_t_domain_fin += loss_t_domain
mse_fin += loss_s_label
optimizer.step()
loss_total_fin = loss_total_fin / len_dataloader
loss_t_domain_fin = loss_t_domain_fin / len_dataloader
mse_fin = mse_fin / len_dataloader
print('EPOCH {} TRAINING SET RESULTS: Average total loss: {:.4f} Average target domain loss: {:.4f} '
'Average source regression loss: {:.4f}'.format(epoch, loss_total_fin, loss_t_domain_fin, mse_fin))
if use_local_logger and logger is not None:
logger.log({'epoch': epoch,
'train_total_loss': loss_total_fin,
'train_source_reg_loss': mse_fin,
'train_target_domain_loss': loss_t_domain_fin})
if use_wandb:
wandb.log({"train_total_loss": loss_total_fin,
"train_source_reg_loss": mse_fin,
"train_target_domain_loss": loss_t_domain_fin})
if torch.cuda.is_available():
torch.cuda.empty_cache()
@torch.no_grad()
def test(s_test_loader, t_test_loader, model, epoch, epochs, tr_s_x1_mm_tuple, tr_s_x2_mm_tuple,
tr_t_x1_mm_tuple, tr_t_x2_mm_tuple, logger, is_parallel):
s_loader = tqdm(enumerate(s_test_loader), total=len(s_test_loader))
t_loader = tqdm(enumerate(t_test_loader), total=len(t_test_loader))
len_dataloader = min(len(s_loader), len(t_loader))
mse_s_fin, mse_t_fin = 0, 0
for (i, (x1s, x2s, ys)), (_, (x1t, x2t, yt)) in zip(s_loader, t_loader):
p = float(i + epoch * len_dataloader) / epochs / len_dataloader
alpha = 2. / (1. + np.exp(-10 * p)) - 1
# xs, xt = compute_batch_xs_xt(normalization(x1s, tr_s_x1_mm_tuple[0], tr_s_x1_mm_tuple[1]),
# normalization(x2s, tr_s_x2_mm_tuple[0], tr_s_x2_mm_tuple[1]),
# normalization(x1t, tr_t_x1_mm_tuple[0], tr_t_x1_mm_tuple[1]),
# normalization(x2t, tr_t_x2_mm_tuple[0], tr_t_x2_mm_tuple[1]))
xs, xt = compute_batch_xs_xt(standardization(x1s, tr_s_x1_mm_tuple[0], tr_s_x1_mm_tuple[1]),
normalization(x2s, tr_s_x2_mm_tuple[0], tr_s_x2_mm_tuple[1]),
standardization(x1t, tr_t_x1_mm_tuple[0], tr_t_x1_mm_tuple[1]),
normalization(x2t, tr_t_x2_mm_tuple[0], tr_t_x2_mm_tuple[1]))
if torch.cuda.is_available():
xs, ys, xt, yt = xs.to(0), ys.to(0), xt.to(0), yt.to(0)
regression_pred, _ = model(xs, alpha)
# if torch.cuda.is_available():
# del xs
# torch.cuda.empty_cache()
mse_s = loss_regression(regression_pred, ys.view(-1, 1))
# if torch.cuda.is_available():
# del regression_pred
# del ys
# torch.cuda.empty_cache()
regression_pred2, _ = model(xt, alpha)
# if torch.cuda.is_available():
# del xt
# torch.cuda.empty_cache()
mse_t = loss_regression(regression_pred2, yt.view(-1, 1))
# if torch.cuda.is_available():
# del regression_pred2
# del yt
# torch.cuda.empty_cache()
if is_parallel > 1:
mse_s_fin += mse_s.mean()
mse_t_fin += mse_t.mean()
else:
mse_s_fin += mse_s
mse_t_fin += mse_t
mse_s_fin = mse_s_fin / len_dataloader
mse_t_fin = mse_t_fin / len_dataloader
if use_local_logger and logger is not None:
logger.log({'epoch': epoch,
'test_source_mse': mse_s_fin,
'test_target_mse': mse_t_fin})
if use_wandb:
wandb.log({"test_source_mse": mse_s_fin,
"test_target_mse": mse_t_fin})
print('EPOCH {} TESTING RESULTS: Average source mse: {:.4f} Average target mse: {:.4f}'
.format(epoch, mse_s_fin, mse_t_fin))
if torch.cuda.is_available():
torch.cuda.empty_cache()
def main(argv):
info = 'CclDdNormAcrossSetCatSepYNoNormMTanh'
k_fold = 5
batch_size = 1000
lr = 1e-3
epochs = 100
is_parallel = 0
if torch.cuda.is_available():
is_parallel = torch.cuda.device_count()
# Variables hold folder names
run_curr = 1
for path in os.listdir(WEIGHTS_PATH):
# If current path is a dir
if os.path.isdir(os.path.join(WEIGHTS_PATH, path)):
run_curr += 1
dir_weights = '{}RUN{}_{}_{}/'.format(WEIGHTS_PATH, run_curr, date.today(), info)
dir_plots = '{}RUN{}_{}_{}/plots/'.format(LOGGER_PATH, run_curr, date.today(), info)
dir_values = '{}RUN{}_{}_{}/values/'.format(LOGGER_PATH, run_curr, date.today(), info)
print('Number of GPU(s) used: {} \nRUN {} \nDATE {} \nINFORMATION {} \nLEARNING RATE {} \nBATCH SIZE {} \nEPOCHS {}'
.format(is_parallel, run_curr, date.today(), info, lr, batch_size, epochs))
gdsc_ic50_dataset = \
MyDataset.from_ccl_dd_ic50(torch.load(GDSC_TENSOR_PATH + 'CCL.pt'),
torch.load(GDSC_TENSOR_PATH + 'DD.pt'),
torch.load(GDSC_TENSOR_PATH + 'IC50.pt'))
print('Data loading CKPT 1.')
ccle_domain_dataset = \
MyDataset.from_ccl_dd_domain(torch.load(CCLE_TENSOR_PATH + 'CCL.pt'),
torch.load(CCLE_TENSOR_PATH + 'DD.pt'),
1)
print('Data loading CKPT 2.')
ccle_ic50_dataset_test = \
MyDataset.from_ccl_dd_ic50(torch.load(CCLE_TENSOR_PATH + 'CCL_COMMON.pt'),
torch.load(CCLE_TENSOR_PATH + 'DD_COMMON.pt'),
torch.load(CCLE_TENSOR_PATH + 'IC50_COMMON.pt'), frac=0.2)
print('Dataset load complete.')
# tr_s_x1_mm_tuple = (gdsc_ic50_dataset.get_x1_min_max())
tr_s_x2_mm_tuple = (gdsc_ic50_dataset.get_x2_min_max())
# tr_t_x1_mm_tuple = (ccle_domain_dataset.get_x1_min_max())
tr_t_x2_mm_tuple = (ccle_domain_dataset.get_x2_min_max())
tr_s_x1_mm_tuple = (gdsc_ic50_dataset.get_x1_mean_std())
# tr_s_x2_mm_tuple = (gdsc_ic50_dataset.get_x2_mean_std())
tr_t_x1_mm_tuple = (ccle_domain_dataset.get_x1_mean_std())
# tr_t_x2_mm_tuple = (ccle_domain_dataset.get_x2_mean_std())
print('tr_s_x1_mm_tuple', tr_s_x1_mm_tuple)
print('tr_s_x2_mm_tuple', tr_s_x2_mm_tuple)
print('tr_t_x1_mm_tuple', tr_t_x1_mm_tuple)
print('tr_t_x2_mm_tuple', tr_t_x2_mm_tuple)
print('Data distribution parameters computed.')
gdsc_ic50_fold = KFold(gdsc_ic50_dataset, k_fold, 1)
ccle_domain_fold = KFold(ccle_domain_dataset, k_fold, 1)
print('K-fold split complete.')
for k in range(k_fold):
train_logger, test_logger = None, None
if use_local_logger:
train_logger = Logger(['epoch',
'train_total_loss',
'train_source_reg_loss',
'train_target_domain_loss'])
test_logger = Logger(['epoch',
'test_source_mse',
'test_target_mse'])
if use_wandb:
wandb.init(project="dann_on_drug_response", entity="xingshen")
wandb.config = {
"fold": k,
"learning_rate": lr,
"batch_size": batch_size,
"epochs": epochs
}
tmp0, tmp1 = gdsc_ic50_fold.get_next_train_validation()
gdsc_tr_loader, gdsc_v_loader = \
DataLoader(tmp0, batch_size=batch_size, shuffle=False, drop_last=True), \
DataLoader(tmp1, batch_size=1, shuffle=False, drop_last=True)
tmp0, tmp1 = ccle_domain_fold.get_next_train_validation()
ccle_tr_loader, ccle_v_loader = \
DataLoader(tmp0, batch_size=batch_size, shuffle=False, drop_last=True), \
DataLoader(tmp1, batch_size=1, shuffle=False, drop_last=True)
ccle_ic50_test_loader = DataLoader(ccle_ic50_dataset_test, batch_size=1, shuffle=False)
model = DANN(gdsc_ic50_dataset.get_n_feature(), 0.8, 1)
use_model = model
if is_parallel > 1:
use_model = torch.nn.DataParallel(model, device_ids=[*range(is_parallel)])
if torch.cuda.is_available():
print('CUDA MEM ALLOCATED before loading the model: ', torch.cuda.memory_allocated())
print('CUDA MEM RESERVED before loading the model: ', torch.cuda.memory_reserved())
use_model = use_model.to(0)
print('CUDA MEM ALLOCATED after loading the model: ', torch.cuda.memory_allocated())
print('CUDA MEM RESERVED after loading the model: ', torch.cuda.memory_reserved())
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
print('Start training on fold {}.'.format(k))
for epoch in range(1, epochs + 1):
train(gdsc_tr_loader, ccle_tr_loader, use_model, optimizer, batch_size, epoch, epochs,
tr_s_x1_mm_tuple, tr_s_x2_mm_tuple, tr_t_x1_mm_tuple, tr_t_x2_mm_tuple, train_logger, is_parallel)
if not os.path.exists(dir_weights):
os.makedirs(dir_weights)
if epoch % 10 == 0:
if is_parallel > 1:
torch.save(use_model.module.state_dict(),
dir_weights + 'TRAIN_DANN_FD{}_BS{}_LR{}_EP{}_P.pt'.format(k + 1, batch_size, lr, epoch))
else:
torch.save(use_model.state_dict(),
dir_weights + 'TRAIN_DANN_FD{}_BS{}_LR{}_EP{}.pt'.format(k + 1, batch_size, lr, epoch))
# Use the scalar in training to do normalization
test(gdsc_v_loader, ccle_ic50_test_loader, use_model, epoch, epochs, tr_s_x1_mm_tuple, tr_s_x2_mm_tuple,
tr_t_x1_mm_tuple, tr_t_x2_mm_tuple, test_logger, is_parallel)
if use_local_logger:
if not os.path.exists(dir_plots):
os.makedirs(dir_plots)
if not os.path.exists(dir_values):
os.makedirs(dir_values)
train_logger.save_csv(
dir_values + 'TRAIN_METRICS_FD{}_BS{}_LR{}_EP{}.csv'.format(k + 1, batch_size, lr, epochs))
train_logger.save_plot(
dir_plots + 'TRAIN_PLOT_FD{}_BS{}_LR{}_EP{}.jpg'.format(k + 1, batch_size, lr, epochs))
test_logger.save_csv(
dir_values + 'TEST_METRICS_FD{}_BS{}_LR{}_EP{}.csv'.format(k + 1, batch_size, lr, epochs))
test_logger.save_plot(dir_plots + 'TEST_PLOT_FD{}_BS{}_LR{}_EP{}.jpg'.format(k + 1, batch_size, lr, epochs))
if __name__ == "__main__":
main(sys.argv[1:])