-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathdemo.py
53 lines (44 loc) · 1.71 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import matplotlib.pyplot as plt
import torch
import cv2
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
import sys
sys.path.append("..")
from tinysam import sam_model_registry, SamPredictor
model_type = "vit_t"
sam = sam_model_registry[model_type](checkpoint="./weights/tinysam.pth")
device = "cuda" if torch.cuda.is_available() else "cpu"
sam.to(device=device)
predictor = SamPredictor(sam)
image = cv2.imread('fig/picture1.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
input_point = np.array([[400, 400]])
input_label = np.array([1])
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
)
plt.figure(figsize=(10,10))
plt.imshow(image)
show_mask(masks[scores.argmax(),:,:], plt.gca())
show_points(input_point, input_label, plt.gca())
plt.axis('off')
plt.savefig("test.png")