-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
435 lines (375 loc) · 18.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
'''
Single-GPU training.
'''
import argparse
import math
from datetime import datetime
# import h5py
import numpy as np
import tensorflow as tf
import socket
import importlib
import os
import sys
import cv2
import torch
import random
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(ROOT_DIR, 'models'))
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
import tf_util
import dataloader
from dict_restore import DictRestore
from saver_restore import SaverRestore
import spatial_transforms
import target_transforms
from mean import get_mean, get_std
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default='0,1', help='GPU to use [default: GPU 0,1]')
parser.add_argument('--model', default='', help='Model name [default: ]')
parser.add_argument('--model_path', default=None, help='Model snapshot to restore [default: ]')
parser.add_argument('--log_dir', default='log', help='Log dir [default: log]')
parser.add_argument('--data', default='', help='Data dir [default: ]')
parser.add_argument('--height', type=int, default=112, help='Video image height [default: 112]')
parser.add_argument('--width', type=int, default=112, help='Video image width [default: 112]')
parser.add_argument('--num_frames', type=int, default=8, help='Number of frames to use [default: 251]')
parser.add_argument('--frame_step', type=int, default=4, help='Frame step [default: 4]')
parser.add_argument('--pool_t', type=int, default=1, help='Whether to pool in time dimension [default: 1]')
parser.add_argument('--max_epoch', type=int, default=251, help='Epoch to run [default: 251]')
parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]')
parser.add_argument('--learning_rate', type=float, default=0.01, help='Initial learning rate [default: 0.002]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='momentum', help='adam or momentum [default: momentum]')
parser.add_argument('--weight_decay', type=float, default=None, help='Weight decay factor [default: 0.0001]')
parser.add_argument('--decay_step', type=int, default=40, help='Decay step (number of epoches) for lr decay [default: 40]')
parser.add_argument('--decay_rate', type=float, default=0.1, help='Decay rate for lr decay [default: 0.1]')
parser.add_argument('--num_threads', type=int, default=64, help='Number of threads to use in loading data [default: 64]')
parser.add_argument('--num_classes', type=int, default=400, help='Number of classes [default: 400]')
parser.add_argument('--symmetric_flip_labels', default=None, help='The left-right label pairs [default: None]')
parser.add_argument('--reset_lr', action='store_true', help='Reset learning rate instead of continue with last training')
parser.add_argument('--freeze_bn', action='store_true', help='Freeze all batch norm layers')
parser.add_argument('--debug', action='store_true', help='Whether to debug load model')
parser.add_argument('--command_file', default=None, help=' [Shell command file to use default: None]')
FLAGS = parser.parse_args()
random.seed(0)
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu)
EPOCH_CNT = 0
NUM_GPUS = len(FLAGS.gpu.split(','))
BATCH_SIZE = FLAGS.batch_size
assert(BATCH_SIZE % NUM_GPUS == 0)
DEVICE_BATCH_SIZE = BATCH_SIZE // NUM_GPUS
BATCH_SIZE = FLAGS.batch_size
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
NUM_FRAMES = FLAGS.num_frames
FRAME_STEP = FLAGS.frame_step
POOL_T = FLAGS.pool_t
HEIGHT = FLAGS.height
WIDTH = FLAGS.width
DATA = FLAGS.data
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
WEIGHT_DECAY = FLAGS.weight_decay
EPOCH_DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
NUM_THREADS = FLAGS.num_threads
RESET_LR = FLAGS.reset_lr
FREEZE_BN = FLAGS.freeze_bn
DEBUG = FLAGS.debug
SYMMETRIC_FLIP_LABELS = FLAGS.symmetric_flip_labels
COMMAND_FILE = FLAGS.command_file
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(ROOT_DIR, 'models', FLAGS.model+'.py')
MODEL_PATH = FLAGS.model_path
LOG_DIR = FLAGS.log_dir
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp %s %s' % (__file__, LOG_DIR)) # bkp of train procedure
os.system('cp %s %s ' % (COMMAND_FILE, LOG_DIR)) # bkp of command shell file
os.system('cp utils/net_utils.py %s ' % (LOG_DIR)) # bkp of net_utils file
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
# train augmentation
normalize = spatial_transforms.ToNormalizedTensor(mean=get_mean(), std=get_std())
train_transform = spatial_transforms.Compose([
spatial_transforms.RandomResizedCrop(size=(WIDTH, WIDTH), scale=(0.5, 1.0), ratio=(1.- 0.1, 1. + 0.1)),
# spatial_transforms.RandomHorizontalFlip(),
spatial_transforms.ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1),
normalize])
# validation transform
val_transform = spatial_transforms.Compose([
# spatial_transforms.Resize(256),
spatial_transforms.CenterCrop(WIDTH),
normalize])
target_transform = target_transforms.ClassLabel()
train_loader, val_loader = dataloader.get_loader(root=DATA, train_transform=train_transform, val_transform=val_transform, target_transform=target_transform,
batch_size=BATCH_SIZE, num_frames=NUM_FRAMES, step_size=FRAME_STEP, val_samples=1, n_threads=NUM_THREADS)
DECAY_STEP = EPOCH_DECAY_STEP * len(train_loader)
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
HOSTNAME = socket.gethostname()
NUM_CLASSES = FLAGS.num_classes
symmetric_flip_labels = {}
if SYMMETRIC_FLIP_LABELS is not None:
pairs = SYMMETRIC_FLIP_LABELS.split(',')
for p in pairs:
p1, p2 = p.split(':')
symmetric_flip_labels[int(p1)] = int(p2)
symmetric_flip_labels[int(p2)] = int(p1)
print('symmetric pairs: ', symmetric_flip_labels)
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def average_gradients(tower_grads):
"""Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
From tensorflow tutorial: cifar10/cifar10_multi_gpu_train.py
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been averaged
across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
if grad_and_vars[0][0] is not None:
grads = []
for g, v in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def train():
with tf.Graph().as_default():
with tf.device('/cpu:0'):
video_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_FRAMES, HEIGHT, WIDTH)
is_training_pl = tf.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter
# for you every time it trains.
batch = tf.get_variable('batch', [],
initializer=tf.constant_initializer(0), trainable=False)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
print("--- Get training operator")
# Get training operator
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
MODEL.get_model(video_pl, num_classes=NUM_CLASSES if not DEBUG else 1000, is_training=is_training_pl, bn_decay=bn_decay, weight_decay=WEIGHT_DECAY, pool_t=POOL_T, freeze_bn=FREEZE_BN)
tower_grads = []
pred_gpu = []
total_loss_gpu = []
for i in range(NUM_GPUS):
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
with tf.device('/gpu:%d'%(i)), tf.name_scope('gpu_%d'%(i)) as scope:
# Evenly split input data to each GPU
vd_batch = tf.slice(video_pl,
[i*DEVICE_BATCH_SIZE,0,0,0,0], [DEVICE_BATCH_SIZE,-1,-1,-1,-1])
label_batch = tf.slice(labels_pl,
[i*DEVICE_BATCH_SIZE], [DEVICE_BATCH_SIZE])
pred, end_points = MODEL.get_model(vd_batch, num_classes=NUM_CLASSES if not DEBUG else 1000,
is_training=is_training_pl, bn_decay=bn_decay, weight_decay=WEIGHT_DECAY, pool_t=POOL_T, freeze_bn=FREEZE_BN)
MODEL.get_loss(pred, label_batch, end_points)
losses = tf.get_collection('losses', scope)
total_loss = tf.add_n(losses, name='total_loss')
for l in losses + [total_loss]:
tf.summary.scalar(l.op.name, l)
grads = optimizer.compute_gradients(total_loss)
tower_grads.append(grads)
pred_gpu.append(pred)
total_loss_gpu.append(total_loss)
pred = tf.concat(pred_gpu, 0)
total_loss = tf.reduce_mean(total_loss_gpu)
grads = average_gradients(tower_grads)
train_op = optimizer.apply_gradients(grads, global_step=batch)
correct = tf.equal(tf.argmax(pred, 1), tf.to_int64(labels_pl))
accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE)
tf.summary.scalar('accuracy', accuracy)
# Add ops to save all the variables.
saver_save = tf.train.Saver(max_to_keep=50)
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'), sess.graph)
# Init variables
init = tf.global_variables_initializer()
sess.run(init)
# Restore variables from disk.
if MODEL_PATH is not None:
if 'npz' not in MODEL_PATH:
sr = SaverRestore(MODEL_PATH, log_string, ignore=['batch:0'] if RESET_LR else [])
sr.run_init(sess)
log_string("Model restored.")
else:
dict_file = np.load(MODEL_PATH)
dict_for_restore = {}
dict_file_keys = dict_file.keys()
for k in dict_file_keys:
dict_for_restore[k] = dict_file[k]
dict_for_restore = MODEL.name_mapping(dict_for_restore, debug=DEBUG)
dict_for_restore = MODEL.convert_2d_3d(dict_for_restore)
dr = DictRestore(dict_for_restore, log_string)
dr.run_init(sess)
log_string("npz file restored.")
if DEBUG:
im = cv2.imread('green_mamba.jpg').astype('float32')
if im.shape[0] < im.shape[1]:
im = cv2.resize(im, (int(256. * float(im.shape[1]) / im.shape[0]), 256))
else:
im = cv2.resize(im, (256, int(256. * float(im.shape[0]) / im.shape[1])))
im = im[int(im.shape[0]/2-112):int(im.shape[0]/2+112), int(im.shape[1]/2-112):int(im.shape[1]/2+112), :]
im = im / 255
mean = np.array([0.485, 0.456, 0.406]).reshape([1, 1, -1])
std = np.array([0.229, 0.224, 0.225]).reshape([1, 1, -1])
im = (im - mean) / std
wh = WIDTH
im = cv2.resize(im, (wh, wh))
im = np.reshape(im, [1, 1, wh, wh, 3])
im = np.tile(im, (1, NUM_FRAMES, 1, 1, 1))
pred_np = sess.run(pred, feed_dict={video_pl: im, is_training_pl: False})
pred_np = np.reshape(pred_np, [-1])
print(pred_np.argsort()[-5:][::-1])
exit()
ops = {'video_pl': video_pl,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': total_loss,
'train_op': train_op,
'merged': merged,
'step': batch,
'end_points': end_points}
best_acc = -1
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
log_string('learning_rate: {}'.format(sess.run(learning_rate)))
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer, train_loader)
# Save the variables to disk.
if epoch % 1 == 0:
save_path = saver_save.save(sess, os.path.join(LOG_DIR, "model-{}.ckpt".format(epoch)))
log_string("Model saved in file: %s" % save_path)
eval_one_epoch(sess, ops, test_writer, val_loader)
def train_one_epoch(sess, ops, train_writer, train_loader):
""" ops: dict mapping from string to tf ops """
is_training = True
log_string(str(datetime.now()))
total_correct = 0
total_seen = 0
loss_sum = 0
for batch_idx, (inputs, targets) in enumerate(train_loader):
batch_data = inputs.data.numpy()
bsize = batch_data.shape[0]
batch_label = targets.data.numpy()
batch_data = np.transpose(batch_data, [0,2,3,4,1])
if SYMMETRIC_FLIP_LABELS is not None:
for b in range(bsize):
if np.random.randint(2) == 1:
batch_data[b] = batch_data[b, :, :, ::-1, :]
if batch_label[b] in symmetric_flip_labels.keys():
batch_label[b] = symmetric_flip_labels[batch_label[b]]
feed_dict = {ops['video_pl']: batch_data,
ops['labels_pl']: batch_label,
ops['is_training_pl']: is_training,}
summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val[0:bsize] == batch_label[0:bsize])
total_correct += correct
total_seen += bsize
loss_sum += loss_val
if (batch_idx+1)%10 == 0:
log_string(' ---- batch: %03d ----' % (batch_idx+1))
log_string('mean loss: %f' % (loss_sum / 10))
log_string('accuracy: %f' % (total_correct / float(total_seen)))
total_correct = 0
total_seen = 0
loss_sum = 0
def eval_one_epoch(sess, ops, test_writer, val_loader):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = False
total_correct_top1 = 0
total_correct_top5 = 0
total_seen = 0
loss_sum = 0
batch_idx = 0
shape_ious = []
log_string(str(datetime.now()))
log_string('---- EPOCH %03d EVALUATION ----'%(EPOCH_CNT))
for batch_idx, (inputs, targets) in enumerate(val_loader):
batch_data = inputs.data.numpy()
bsize = batch_data.shape[0]
batch_label = targets.data.numpy()
batch_data = np.transpose(batch_data, [0,2,3,4,1])
feed_dict = {ops['video_pl']: batch_data,
ops['labels_pl']: batch_label,
ops['is_training_pl']: is_training}
summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['pred']], feed_dict=feed_dict)
test_writer.add_summary(summary, step)
pred_val_top5 = np.argsort(pred_val, 1)[:, ::-1][:, :5]
pred_val_top1 = np.argmax(pred_val, 1)
correct_top1 = np.sum(pred_val_top1[0:bsize] == batch_label[0:bsize])
correct_top5 = np.sum(np.any(pred_val_top5 == np.transpose(np.tile(batch_label[0:bsize], [5, 1])), axis=1))
total_correct_top1 += correct_top1
total_correct_top5 += correct_top5
total_seen += bsize
loss_sum += loss_val
batch_idx += 1
log_string('eval mean loss: %f' % (loss_sum / float(batch_idx)))
log_string('eval accuracy top1 : %f'% (total_correct_top1 / float(total_seen)))
log_string('eval accuracy top5 : %f'% (total_correct_top5 / float(total_seen)))
EPOCH_CNT += 1
if __name__ == "__main__":
log_string('pid: %s'%(str(os.getpid())))
train()
LOG_FOUT.close()