-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
307 lines (235 loc) · 10.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import numpy as np
from sklearn.preprocessing import normalize
import cv2
from scipy.sparse import coo_matrix
from PIL import Image, ImageChops
import os
def move_left(mask):
return np.pad(mask, ((0, 0), (0, 1)), "constant", constant_values=0)[:, 1:]
def move_right(mask):
return np.pad(mask, ((0, 0), (1, 0)), "constant", constant_values=0)[:, :-1]
def move_top(mask):
return np.pad(mask, ((0, 1), (0, 0)), "constant", constant_values=0)[1:, :]
def move_bottom(mask):
return np.pad(mask, ((1, 0), (0, 0)), "constant", constant_values=0)[:-1, :]
def move_top_left(mask):
return np.pad(mask, ((0, 1), (0, 1)), "constant", constant_values=0)[1:, 1:]
def move_top_right(mask):
return np.pad(mask, ((0, 1), (1, 0)), "constant", constant_values=0)[1:, :-1]
def move_bottom_left(mask):
return np.pad(mask, ((1, 0), (0, 1)), "constant", constant_values=0)[:-1, 1:]
def move_bottom_right(mask):
return np.pad(mask, ((1, 0), (1, 0)), "constant", constant_values=0)[:-1, :-1]
def normalize_normal_map(N):
H, W, C = N.shape
N = np.reshape(N, (-1, C))
N = normalize(N, axis=1)
N = np.reshape(N, (H, W, C))
return N
def file_path(string):
if os.path.isfile(string) or os.path.isdir(string):
return string
else:
raise FileNotFoundError(string)
def construct_facets_from_depth_map_mask(mask):
idx = np.zeros_like(mask, dtype=np.int)
idx[mask] = np.arange(np.sum(mask))
facet_move_top_mask = move_top(mask)
facet_move_left_mask = move_left(mask)
facet_move_top_left_mask = move_top_left(mask)
facet_top_left_mask = np.logical_and.reduce((facet_move_top_mask, facet_move_left_mask, facet_move_top_left_mask, mask))
facet_top_right_mask = move_right(facet_top_left_mask)
facet_bottom_left_mask = move_bottom(facet_top_left_mask)
facet_bottom_right_mask = move_bottom_right(facet_top_left_mask)
return np.hstack((4 * np.ones((np.sum(facet_top_left_mask), 1)),
idx[facet_top_left_mask][:, None],
idx[facet_bottom_left_mask][:, None],
idx[facet_bottom_right_mask][:, None],
idx[facet_top_right_mask][:, None])).astype(np.int)
def construct_vertices_from_depth_map_and_mask(mask, depth_map, step_size=1):
H, W = mask.shape
yy, xx = np.meshgrid(range(W), range(H))
xx = np.flip(xx, 0)
xx = xx * step_size
yy = yy * step_size
vertices = np.zeros((H, W, 3))
vertices[..., 0] = xx
vertices[..., 1] = yy
vertices[..., 2] = depth_map
return vertices[mask]
def map_depth_map_to_point_clouds(depth_map, mask, K):
# x
# | z
# | /
# |/
# o ---y
H, W = mask.shape
yy, xx = np.meshgrid(range(W), range(H))
xx = np.flip(xx, axis=0)
u = np.zeros((H, W, 3))
u[..., 0] = xx
u[..., 1] = yy
u[..., 2] = 1
u = u[mask].T # 3 x m
p_tilde = (np.linalg.inv(K) @ u).T # m x 3
return p_tilde * depth_map[mask, np.newaxis]
def apply_jet_on_single_error_map(err_map):
mu = np.nanmean(err_map)
sigma = np.nanstd(err_map)
err_map = err_map / (mu + 3 * sigma)
err_map[err_map > 1] = 1
err_map[np.isnan(err_map)] = 1
err_jet = cv2.applyColorMap((255 * err_map).astype(np.uint8), cv2.COLORMAP_JET)
return err_jet
def apply_jet_on_multiple_error_maps(err_maps, sigma_multiplier=3):
mu = np.nanmean(np.array(err_maps))
sigma = np.nanstd(np.array(err_maps))
err_jets = []
for err_map in err_maps:
err_map = err_map / (mu + sigma_multiplier * sigma)
err_map[err_map > 1] = 1
nan_mask = np.isnan(err_map)
err_map[nan_mask] = 1
err_jet = cv2.applyColorMap((255 * err_map).astype(np.uint8), cv2.COLORMAP_JET)
err_jet[nan_mask] = 255
err_jets.append(err_jet)
return err_jets
def camera_to_object(n):
no = n.copy()
no[..., 2] = -no[..., 2]
temp0 = no[..., 0].copy()
temp1 = no[..., 1].copy()
no[..., 1] = temp0
no[..., 0] = temp1
return no
def boundary_excluded_mask(mask):
top_mask = np.pad(mask, ((1, 0), (0, 0)), "constant", constant_values=0)[:-1, :]
bottom_mask = np.pad(mask, ((0, 1), (0, 0)), "constant", constant_values=0)[1:, :]
left_mask = np.pad(mask, ((0, 0), (1, 0)), "constant", constant_values=0)[:, :-1]
right_mask = np.pad(mask, ((0, 0), (0, 1)), "constant", constant_values=0)[:, 1:]
be_mask = np.logical_and.reduce((top_mask, bottom_mask, left_mask, right_mask, mask))
# discard single point
top_mask = np.pad(be_mask, ((1, 0), (0, 0)), "constant", constant_values=0)[:-1, :]
bottom_mask = np.pad(be_mask, ((0, 1), (0, 0)), "constant", constant_values=0)[1:, :]
left_mask = np.pad(be_mask, ((0, 0), (1, 0)), "constant", constant_values=0)[:, :-1]
right_mask = np.pad(be_mask, ((0, 0), (0, 1)), "constant", constant_values=0)[:, 1:]
bes_mask = np.logical_or.reduce((top_mask, bottom_mask, left_mask, right_mask))
be_mask = np.logical_and(be_mask, bes_mask)
return be_mask
def boundary_expansion_mask(mask):
left_mask = np.pad(mask, ((0, 0), (0, 1)), "constant", constant_values=0)[:, 1:]
right_mask = np.pad(mask, ((0, 0), (1, 0)), "constant", constant_values=0)[:, :-1]
top_mask = np.pad(mask, ((0, 1), (0, 0)), "constant", constant_values=0)[1:, :]
bottom_mask = np.pad(mask, ((1, 0), (0, 0)), "constant", constant_values=0)[:-1, :]
be_mask = np.logical_or.reduce((left_mask, right_mask, top_mask, bottom_mask))
return be_mask
def curl_of_normal_map(n, mask):
nx = n[..., 0]
ny = n[..., 1]
nz = n[..., 2]
zx = -nx / nz
zy = -ny / nz
top_mask = np.pad(mask, ((1, 0), (0, 0)), "constant", constant_values=0)[:-1, :]
bottom_mask = np.pad(mask, ((0, 1), (0, 0)), "constant", constant_values=0)[1:, :]
left_mask = np.pad(mask, ((0, 0), (1, 0)), "constant", constant_values=0)[:, :-1]
right_mask = np.pad(mask, ((0, 0), (0, 1)), "constant", constant_values=0)[:, 1:]
top_mask = np.logical_and(top_mask, mask)
bottom_mask = np.logical_and(bottom_mask, mask)
left_mask = np.logical_and(left_mask, mask)
right_mask = np.logical_and(right_mask, mask)
num_top = np.sum(top_mask)
num_bottom = np.sum(bottom_mask)
num_left = np.sum(left_mask)
num_right = np.sum(right_mask)
num_mask = np.sum(mask)
idx_array = np.ones_like(mask, dtype=np.int) * np.nan
idx_array[mask] = np.arange(np.sum(mask))
right_row_idx = np.tile(np.arange(num_right), 2)
right_column_idx = np.concatenate((idx_array[right_mask].flatten(),
idx_array[left_mask].flatten())).astype(np.int)
right_data = np.array([-1] * num_right + [1] * num_right)
right_convolution = coo_matrix((right_data, (right_row_idx, right_column_idx)),
shape=(num_right, num_mask))
right_forward_flatten = right_convolution @ zx[mask].flatten()
right_forward = np.ones_like(mask) * np.nan
right_forward[right_mask] = right_forward_flatten
#
left_row_idx = np.tile(np.arange(num_left), 2)
left_column_idx = np.concatenate((idx_array[left_mask].flatten(),
idx_array[right_mask].flatten())).astype(np.int)
left_data = np.array([1] * num_left + [-1] * num_left)
left_convolution = coo_matrix((left_data, (left_row_idx, left_column_idx)),
shape=(num_left, num_mask))
left_forward_flatten = left_convolution @ zx[mask].flatten()
left_forward = np.ones_like(mask) * np.nan
left_forward[left_mask] = left_forward_flatten
top_row_idx = np.tile(np.arange(num_top), 2)
top_column_idx = np.concatenate((idx_array[top_mask].flatten(),
idx_array[bottom_mask].flatten())).astype(np.int)
top_data = np.array([-1] * num_top + [1] * num_bottom)
top_convolution = coo_matrix((top_data, (top_row_idx, top_column_idx)),
shape=(num_top, num_mask))
top_forward_flatten = top_convolution @ zy[mask].flatten()
top_forward = np.ones_like(mask) * np.nan
top_forward[top_mask] = top_forward_flatten
bottom_row_idx = np.tile(np.arange(num_bottom), 2)
bottom_column_idx = np.concatenate((idx_array[bottom_mask].flatten(),
idx_array[top_mask].flatten())).astype(np.int)
bottom_data = np.array([1] * num_top + [-1] * num_bottom)
bottom_convolution = coo_matrix((bottom_data, (bottom_row_idx, bottom_column_idx)),
shape=(num_bottom, num_mask))
bottom_forward_flatten = bottom_convolution @ zy[mask].flatten()
bottom_forward = np.ones_like(mask) * np.nan
bottom_forward[bottom_mask] = bottom_forward_flatten
z_xy = np.nanmean(np.concatenate((right_forward[..., None],
left_forward[..., None]), -1), -1)
z_yx = np.nanmean(np.concatenate((top_forward[..., None],
bottom_forward[..., None]), -1), -1)
# z_xy_cv2 = cv2.filter2D(zx, -1, kernel=np.array([[0, 0, 0],
# [-0.5, 0, 0.5],
# [0, 0, 0]]))
# z_yx_cv2 = cv2.filter2D(zy, -1, kernel=np.array([[0, 0.5, 0],
# [0, 0, 0],
# [0, -0.5, 0]]))
curl = np.abs(z_xy - z_yx)
# curl_cv2 = np.abs(z_xy_cv2 - z_yx_cv2)
return curl, z_yx, z_xy, zx, zy
def crop_a_set_of_images(*image_path):
from PIL import ImageChops, Image
imgs = []
bboxes = []
for im_path in image_path:
im = Image.open(im_path)
bg = Image.new(im.mode, im.size, im.getpixel((0, 0)))
diff = ImageChops.difference(im, bg)
diff = ImageChops.add(diff, diff, 2.0, -5)
bbox = diff.getbbox()
imgs.append(im)
bboxes.append(bbox)
bbox_aggre = np.asarray(bboxes)
bbox_min = np.min(bbox_aggre, 0)
bbox_max = np.max(bbox_aggre, 0)
bbox_common = (bbox_min[0], bbox_min[1], bbox_max[2], bbox_max[3])
for idx, img in enumerate(imgs):
img = img.crop(bbox_common)
img.save(image_path[idx])
pass
def angular_error_map(N1, N2):
dot = np.sum(np.multiply(N1, N2), axis=-1)
dot = np.clip(dot, -1., 1.)
return np.rad2deg(np.arccos(dot))
def crop_mask(mask):
if mask.dtype is not np.uint8:
mask = mask.astype(np.uint8) * 255
im = Image.fromarray(mask)
bg = Image.new(im.mode, im.size, im.getpixel((0, 0)))
diff = ImageChops.difference(im, bg)
diff = ImageChops.add(diff, diff, 2.0, 0)
bbox = diff.getbbox()
return bbox
def crop_image_by_mask(img, mask):
bbox = crop_mask(mask)
return img.copy()[bbox[1]:bbox[3], bbox[0]:bbox[2]]
def mkdir(data_dir):
if not os.path.exists(data_dir):
os.mkdir(data_dir)