forked from cpezzato/active_inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAICpanda.cpp
155 lines (136 loc) · 5.52 KB
/
AICpanda.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/*
* File: AICpanda.cpp
* Author: Corrado Pezzato, CoR, TU Deft
*
* Created on September 4th, 2019
*
* This node allows to control the 7DOF Franka Emika Panda robot arm through
* Active Inference
*
* The control is in joint space, sending torque commands and using position and
* velocity feedback. The robot moves to the desired goal from the initial pose.
*
* ---> Usage:: ./<folder_code>/AICpanda.cpp <fci-ip>
*
*/
#include <iostream>
#include <array>
#include <franka/robot.h>
#include <franka/duration.h>
#include <franka/exception.h>
#include <Eigen/Core>
#include <Eigen/Dense>
#include "examples_common.h"
int main(int argc, char** argv) {
// Check if the user provided the hostname or IP
if (argc != 2) {
std::cerr << "Usage: " << argv[0] << " <robot-hostname>" << std::endl;
return -1;
}
// If hostname or IP provided, try to connect to the robot
try {
// Define an object for the Panda to handle the control signals and read
// the sensors. Using the method robot.control() you read the
// joint values at 1kHz
franka::Robot robot(argv[1]);
setDefaultBehavior(robot);
// Set collision behavior
robot.setCollisionBehavior({{100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0}},
{{100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0}},
{{100.0, 100.0, 100.0, 100.0, 100.0, 100.0}},
{{100.0, 100.0, 100.0, 100.0, 100.0, 100.0}});
// Define controller
/////////// Controller parameters /////////////
// Auxiliary variables
double time = 0.0;
double maxTime = 100.0;
// Variances for internal belief and sensory input, learning rates, integration step
double var_q, var_qdot, var_mu, var_muprime, k_mu, k_a, h;
// Precision matrices, diagonal matrices with the inverce of the variance
Eigen::Matrix<double, 7, 7> SigmaP_yq0, SigmaP_yq1, SigmaP_mu, SigmaP_muprime;
// Belief about the states and their derivatives mu, mu', mu'', joint states, desired value, control
Eigen::Matrix<double, 7, 1> mu, mu_p, mu_pp, mu_dot, mu_dot_p, mu_dot_pp, jointPos, jointVel, mu_d, u;
// Set desired goal
// Center
mu_d << 0.0345169,-0.167844,-0.000332711,-1.74526,0.00905814,1.56589,0.824567;
// Right
//mu_d << 0.15086,0.235858,-0.458875,-2.44786,0.0599695,2.6241,0.450365;
//////////// Controller tuning //////////////
// Variances associated with the beliefs and the sensory inputs
var_mu = 5.0;
var_muprime = 10.0;
var_q = 1;
var_qdot = 1;
// Learning rates for the gradient descent
k_mu = 11.67;
k_a = 200;
// Integration step
h = 0.001;
// Precision matrices (first set them to zero then populate the diagonal)
SigmaP_yq0 = Eigen::Matrix<double, 7, 7>::Zero();
SigmaP_yq1 = Eigen::Matrix<double, 7, 7>::Zero();
SigmaP_mu = Eigen::Matrix<double, 7, 7>::Zero();
SigmaP_muprime = Eigen::Matrix<double, 7, 7>::Zero();
//////////////////////////////////////////////
// Read robot initial state to set the initial belief
franka::RobotState initial_state = robot.readOnce();
// Initialization
for( int i = 0; i < 7; i = i + 1 ) {
SigmaP_yq0(i,i) = 1/var_q;
SigmaP_yq1(i,i) = 1/var_qdot;
SigmaP_mu(i,i) = 1/var_mu;
SigmaP_muprime(i,i) = 1/var_muprime;
// Internal belief starting from initial pose
jointPos(i) = initial_state.q[i];
jointVel(i) = initial_state.dq[i];
}
// Initial belief
mu = jointPos;
mu_p = jointVel;
mu_pp << 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// Initial control actions
u << 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// Controller callback for RT loop
auto my_AIC_controller_callback = [&](const franka::RobotState& robot_state,
franka::Duration period) -> franka::Torques {
time += period.toSec();
// Save the robot state for algebric manipulation
for( int i = 0; i < 7; i = i + 1 ) {
// Set current sensory input
jointPos(i) = robot_state.q[i];
jointVel(i) = robot_state.dq[i];
}
/////////// Active inference ///////////
// Belief update
mu_dot = mu_p - k_mu*(-SigmaP_yq0*(jointPos-mu)+SigmaP_mu*(mu_p+mu-mu_d));
mu_dot_p = mu_pp - k_mu*(-SigmaP_yq1*(jointVel-mu_p)+SigmaP_mu*(mu_p+mu-mu_d)+SigmaP_muprime*(mu_pp+mu_p));
mu_dot_pp = - k_mu*(SigmaP_muprime*(mu_pp+mu_p));
mu = mu + h*mu_dot; // Belief about the position
mu_p = mu_p + h*mu_dot_p; // Belief about motion of mu
mu_pp = mu_pp + h*mu_dot_pp; // Belief about motion of mu'
// Compute control actions
u = u-h*k_a*(SigmaP_yq1*(jointVel-mu_p)+SigmaP_yq0*(jointPos-mu));
// Build control signal and send it to the robot
franka::Torques tau_cmd = {{u(0), u(1), u(2), u(3), u(4), u(5), u(6)}};
// Set torques to zero for testing
// franka::Torques tau_cmd = {{0, 0, 0, 0, 0, 0, 0}};
if (time >= maxTime) {
std::cout << std::endl << "Finished motion, shutting down demo" << std::endl;
return franka::MotionFinished(tau_cmd);
}
return tau_cmd;
};
std::cout << "WARNING: Make sure sure that the robot has enough space to move. Keep in mind that "
"collision thresholds are set to high values."
<< std::endl
<< "Press Enter to start the demo..." << std::endl;
std::cin.ignore();
// start real-time control loop
robot.control(my_AIC_controller_callback);
// Catch the exemptions if any connection errors occurred
} catch (franka::Exception const& e) {
std::cout << e.what() << std::endl;
return -1;
}
return 0;
}