Skip to content

Latest commit

 

History

History
106 lines (73 loc) · 6.59 KB

README.md

File metadata and controls

106 lines (73 loc) · 6.59 KB

ci_windows_cuda

github action gitlab ci

This repo creates the dockerfiles for using cuda in windows docker and provides the gitlab CI and github action setting. Moreover, share my experience/questions/failure during make them work.

The docker images are availble in the docker hub https://hub.docker.com/repository/docker/yhmtsai/windows_cuda

Pull images: docker pull yhmtsai/windows_cuda:windows_1903 or docker pull yhmtsai/windows_cuda:windows_server_ltsc2019

Run powershell: docker run -it --rm yhmtsai/windows_cuda:tag powershell

Run cmd: docker run -it --rm yhmtsai/windows_cuda:tag cmd

Build the docker images: docker build -t image_name -m 2GB -f dockerfile_name .

They should work for different windows/cuda version. Changing the MSVC version (2017 or others) needs to find the correct integration path.

Docker Image

Windows

Windows containers only needs choco install cuda and copy the MSVC related files to the corresponding path.

Windows Server

According to the documentation, use mcr.microsoft.com/dotnet/framework/sdk:4.8-windowsservercore-ltsc2019 not mcr.microsoft.com/windows/servercore:ltsc2019 as base image. Otherwise, installing MSVC requires reboot to lead the failure.

Note. using " in dockerfile of windows server gives some error.

CUDA

Use choco install cuda or local installer for everything is failed.

Use local installer to install the cuda library without MSVC integration and then copy the files to the corresponding path. When using the local installer, use block command and get the return code.

powershell:

Start-Process -FilePath "path/to/cuda/setup" -ArgumentList "argument -s ...." -Wait -NoNewWindow and use echo $? to get the return code.

cmd:

start /wait path/to/cuda/setup argument-list-seperated-by-space and use echo %errorlevel% to get the return code.

Gitlab CI

Gitlab introduces Windows Virtual Machine shared runner.

It only has windows server version, the steps are similar to Docker Windows Server. i.e. choco install cuda -y does not work.

Running choco install cmake -y with --installargs '"ADD_CMAKE_TO_PATH=System"' or --installargs '"ADD_CMAKE_TO_PATH=User"' and refreshenv doesn't set the CMake Path like docker, so use $env:PATH="C:\Program Files\CMake\bin;$env:PATH" to set cmake in powershell.

Note. $env:..=... is only valid in current session, so using it in dockerfile does not affect the running environment.

Note. Gitlab CI does not set refreshenv properly. Besides $env:PATH="C:\Program Files\CMake\bin;$env:PATH", use the following to set refreshenv properly from reference.

$env:ChocolateyInstall = Convert-Path "$((Get-Command choco).Path)\..\.."   
Import-Module "$env:ChocolateyInstall\helpers\chocolateyProfile.psm1"

Note. I try to use gitlab variable in powershell cmake, but it does not work by using ${VARNAME} $VARNAME. Thus, need to specify each jobs variable individually.

Github Action

Because Github action does not use MSVC buildtools, using choco install cuda -y works well without copying integration. The environment in different step are the same, so needs to use refreshenv to get correct environmet, set correct environment manually, or use set-env from Github Action

Test in Docker: using Ginkgo Project

The following is run in cmd. Runing it in powershell needs to another way to initial environment.

using server version needs the following setting. (I try several ways to update PATH but all leads the failure. Thus, need to set environment of cuda first)

set PATH=%ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin;%PATH%
set CUDA_PATH=%ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v10.2
set CUDA_PATH_V10_2=%ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v10.2

The test:

"C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Auxiliary\Build\vcvars64.bat"
git clone https://github.com/ginkgo-project/ginkgo && cd ginkgo && mkdir build && cd build
set PATH=C:/ginkgo/build/windows_shared_library;%PATH%
cmake -DGINKGO_BUILD_CUDA=ON -DGINKGO_BUILD_OMP=OFF ..
cmake --build . --config Release
ctest . -C Release

The compiliation of cuda works.

Note. the ctest gets error because we do not have cuda device inside the container.

NOTE: find the corresponding path of MSVC integration

choco install cuda install integration into the path mentioned in the cuda documentation. However, it seems to work on MSVC IDE not MSVC buildtools. (I do not find the proper way to install MSVC IDE with vcvars64.bat environment. I only found using MSVC buildtools to compile project)

In my experience, if the cmake reports CUDA Toolkit Not Found, use cmake -T cuda=10.2 toolchain setting may give the hint of the path.

Delete the last line of windows_1903.dockerfile, and try to use cmake -T cuda=10.2 -DCMAKE_CUDA_COMPILER="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.2/bin/nvcc.exe" -DGINKGO_BUILD_CUDA=ON -DGINKGO_BUILD_OMP=OFF .. (cmake can not find CUDA_COMPILER when set -T, so needs -DCMAKE_CUDA_COMPILER=...) on Ginkgo Project.

The error message:

error MSB4019:
The imported project "C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\MSBuild\Microsoft\VC\v160\BuildCustomizations\CUDA 10.2.props" was not found.
Confirm that the expression in the Import declaration "C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\MSBuild\Microsoft\VC\v160\\BuildCustomizations\CUDA 10.2.props" is correct, and that the file exists on disk.

cmake tries to finds CUDA 10.2.props in C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\MSBuild\Microsoft\VC\v160\BuildCustomizations

Thus, we need to copy integration in C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\BuildCustomizations\*.* in original correct path or cuda\CUDAVisualStudioIntegration\extras\visual_studio_integration\MSBuildExtensions\*.* the extraction of local installer to the corresponding path C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\MSBuild\Microsoft\VC\v160\BuildCustomizations