-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
68 lines (62 loc) · 1.69 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import argparse
from datasets import load_dataset
from utils.utils_eval import compute_metrics
# Get dataset from arguments
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", required=True)
parser.add_argument("--preds_path", required=True)
args = parser.parse_args()
print(f"Using dataset: {args.dataset}")
print(f"Using prediction text file: {args.preds_path}")
DATASET_NAME = args.dataset
dataset = load_dataset(
"json", data_files=f"data/{DATASET_NAME}_multiple.json", field="train"
)
dataset["test"] = load_dataset(
"json", data_files=f"data/{DATASET_NAME}_multiple.json", field="test"
)["train"]
sources = [item["input"] for item in dataset["test"]]
labels = [item["labels"] for item in dataset["test"]]
with open(args.preds_path) as f:
preds = f.read().splitlines()
if len(preds) > len(sources):
preds = list(filter(lambda s: s != "", preds))
result = compute_metrics(
sources,
preds,
labels,
[
"rouge",
"bert_score",
# "bert_score_l",
# "sari",
"sari_easse",
# "flesch_kincaid_grade",
"fkgl_easse",
"ari",
"check_entities"
],
)
print(result)
print("Copy this string into the Excel and separate by comma")
print(
",".join(
[
str(result[key])
for key in [
"check_entities",
"fkgl_easse",
"ari_score",
"bert_score",
"sari_easse",
"rougeLsum",
# "rouge1",
# "rouge2",
"rougeL",
# "bert_score_l",
# "sari",
# "flesch_kincaid_grade_score",
]
]
)
)