-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathbound_likelihood.py
200 lines (170 loc) · 8.63 KB
/
bound_likelihood.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: skip-file
# pytype: skip-file
"""Various sampling methods."""
import jax
import jax.numpy as jnp
import numpy as np
import utils
from utils import batch_mul
from models import utils as mutils
from utils import get_div_fn, get_value_div_fn
def get_likelihood_bound_fn(sde, model, inverse_scaler, hutchinson_type='Rademacher',
dsm=True, eps=1e-5, N=1000, importance_weighting=True,
eps_offset=True):
"""Create a function to compute the unbiased log-likelihood bound of a given data point.
Args:
sde: A `sde_lib.SDE` object that represents the forward SDE.
model: A `flax.linen.Module` object that represents the architecture of the score-based model.
inverse_scaler: The inverse data normalizer.
hutchinson_type: "Rademacher" or "Gaussian". The type of noise for Hutchinson-Skilling trace estimator.
dsm: bool. Use denoising score matching bound if enabled; otherwise use sliced score matching.
eps: A `float` number. The probability flow ODE is integrated to `eps` for numerical stability.
N: The number of time values to be sampled.
importance_weighting: True if enable importance weighting for potential variance reduction.
eps_offset: True if use Jensen's inequality to offset the likelihood bound due to non-zero starting time.
Returns:
A function that takes random states, replicated training states, and a batch of data points
and returns the log-likelihoods in bits/dim, the latent code, and the number of function
evaluations cost by computation.
"""
def value_div_score_fn(state, x, t, eps):
"""Pmapped divergence of the drift function."""
score_fn = mutils.get_score_fn(sde, model, state.params_ema, state.model_state, train=False, continuous=True)
value_div_fn = get_value_div_fn(lambda x, t: score_fn(x, t))
return value_div_fn(x, t, eps)
def div_drift_fn(x, t, eps):
div_fn = get_div_fn(lambda x, t: sde.sde(x, t)[0])
return div_fn(x, t, eps)
def likelihood_bound_fn(prng, state, data):
"""Compute an unbiased estimate to the log-likelihood in bits/dim.
Args:
prng: An array of random states. The list dimension equals the number of devices.
pstate: Replicated training state for running on multiple devices.
data: A JAX array of shape [#devices, batch size, ...].
Returns:
bpd: A JAX array of shape [#devices, batch size]. The log-likelihoods on `data` in bits/dim.
N: same as input
"""
rng, step_rng = jax.random.split(prng)
if importance_weighting:
time_samples = sde.sample_importance_weighted_time_for_likelihood(step_rng, (N, data.shape[0]), eps=eps)
Z = sde.likelihood_importance_cum_weight(sde.T, eps=eps)
else:
time_samples = jax.random.uniform(step_rng, (N, data.shape[0]), minval=eps, maxval=sde.T)
Z = 1
shape = data.shape
if not dsm:
def scan_fn(carry, vec_time):
rng, value = carry
rng, step_rng = jax.random.split(rng)
if hutchinson_type == 'Gaussian':
epsilon = jax.random.normal(step_rng, shape)
elif hutchinson_type == 'Rademacher':
epsilon = jax.random.rademacher(step_rng, shape, dtype=jnp.float32)
else:
raise NotImplementedError(f"Hutchinson type {hutchinson_type} unknown.")
rng, step_rng = jax.random.split(rng)
noise = jax.random.normal(step_rng, shape)
mean, std = sde.marginal_prob(data, vec_time)
noisy_data = mean + utils.batch_mul(std, noise)
score_val, score_div = value_div_score_fn(state, noisy_data, vec_time, epsilon)
score_norm = jnp.square(score_val.reshape((score_val.shape[0], -1))).sum(axis=-1)
drift_div = div_drift_fn(noisy_data, vec_time, epsilon)
f, g = sde.sde(noisy_data, vec_time)
integrand = utils.batch_mul(g ** 2, 2 * score_div + score_norm) - 2 * drift_div
if importance_weighting:
integrand = utils.batch_mul(std ** 2 / g ** 2 * Z, integrand)
return (rng, value + integrand), integrand
else:
score_fn = mutils.get_score_fn(sde, model, state.params_ema, state.model_state, train=False, continuous=True)
def scan_fn(carry, vec_time):
rng, value = carry
rng, step_rng = jax.random.split(rng)
if hutchinson_type == 'Gaussian':
epsilon = jax.random.normal(step_rng, shape)
elif hutchinson_type == 'Rademacher':
epsilon = jax.random.rademacher(step_rng, shape, dtype=jnp.float32)
else:
raise NotImplementedError(f"Hutchinson type {hutchinson_type} unknown.")
rng, step_rng = jax.random.split(rng)
noise = jax.random.normal(step_rng, shape)
mean, std = sde.marginal_prob(data, vec_time)
noisy_data = mean + utils.batch_mul(std, noise)
drift_div = div_drift_fn(noisy_data, vec_time, epsilon)
score_val = score_fn(noisy_data, vec_time)
grad = utils.batch_mul(-(noisy_data - mean), 1 / std ** 2)
diff1 = score_val - grad
diff1 = jnp.square(diff1.reshape((diff1.shape[0], -1))).sum(axis=-1)
diff2 = jnp.square(grad.reshape((grad.shape[0], -1))).sum(axis=-1)
f, g = sde.sde(noisy_data, vec_time)
integrand = utils.batch_mul(g ** 2, diff1 - diff2) - 2 * drift_div
if importance_weighting:
integrand = utils.batch_mul(std ** 2 / g ** 2 * Z, integrand)
return (rng, value + integrand), integrand
(rng, integral), _ = jax.lax.scan(scan_fn, (rng, jnp.zeros((shape[0],))), time_samples)
integral = integral / N
mean, std = sde.marginal_prob(data, jnp.ones((data.shape[0],)) * sde.T)
rng, step_rng = jax.random.split(rng)
noise = jax.random.normal(step_rng, shape)
neg_prior_logp = -sde.prior_logp(mean + utils.batch_mul(std, noise))
nlogp = neg_prior_logp + 0.5 * integral
# whether to enable likelihood offset
if eps_offset:
score_fn = mutils.get_score_fn(sde, model, state.params_ema, state.model_state, train=False, continuous=True)
offset_fn = get_likelihood_offset_fn(sde, score_fn, eps)
rng, step_rng = jax.random.split(rng)
nlogp = nlogp + offset_fn(step_rng, data)
bpd = nlogp / np.log(2)
dim = np.prod(shape[1:])
bpd = bpd / dim
# A hack to convert log-likelihoods to bits/dim
# based on the gradient of the inverse data normalizer.
offset = jnp.log2(jax.grad(inverse_scaler)(0.)) + 8.
bpd += offset
return bpd, N
return jax.pmap(likelihood_bound_fn, axis_name='batch')
def get_likelihood_offset_fn(sde, score_fn, eps=1e-5):
"""Create a function to compute the unbiased log-likelihood bound of a given data point.
"""
def likelihood_offset_fn(prng, data):
"""Compute an unbiased estimate to the log-likelihood in bits/dim.
Args:
prng: An array of random states. The list dimension equals the number of devices.
pstate: Replicated training state for running on multiple devices.
data: A JAX array of shape [#devices, batch size, ...].
Returns:
bpd: A JAX array of shape [#devices, batch size]. The log-likelihoods on `data` in bits/dim.
N: same as input
"""
rng, step_rng = jax.random.split(prng)
shape = data.shape
eps_vec = jnp.full((shape[0],), eps)
p_mean, p_std = sde.marginal_prob(data, eps_vec)
rng, step_rng = jax.random.split(rng)
noisy_data = p_mean + batch_mul(p_std, jax.random.normal(step_rng, shape))
score = score_fn(noisy_data, eps_vec)
alpha, beta = sde.marginal_prob(jnp.ones_like(data), eps_vec)
q_mean = noisy_data / alpha + batch_mul(beta ** 2, score / alpha)
q_std = beta / jnp.mean(alpha, axis=(1, 2, 3))
n_dim = np.prod(data.shape[1:])
p_entropy = n_dim / 2. * (np.log(2 * np.pi) + 2 * jnp.log(p_std) + 1.)
q_recon = n_dim / 2. * (np.log(2 * np.pi) + 2 * jnp.log(q_std)) + batch_mul(0.5 / (q_std ** 2),
jnp.square(data - q_mean).sum(
axis=(1, 2, 3)))
offset = q_recon - p_entropy
return offset
return likelihood_offset_fn