-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkalloc.c
205 lines (188 loc) · 7.35 KB
/
kalloc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "kalloc.h"
/* In kalloc, a *core* is a large chunk of contiguous memory. Each core is
* associated with a master header, which keeps the size of the current core
* and the pointer to next core. Kalloc allocates small *blocks* of memory from
* the cores and organizes free memory blocks in a circular single-linked list.
*
* In the following diagram, "@" stands for the header of a free block (of type
* header_t), "#" for the header of an allocated block (of type size_t), "-"
* for free memory, and "+" for allocated memory.
*
* master This region is core 1. master This region is core 2.
* | |
* *@-------#++++++#++++++++++++@-------- *@----------#++++++++++++#+++++++@------------
* | | | |
* p=p->ptr->ptr->ptr->ptr p->ptr p->ptr->ptr p->ptr->ptr->ptr
*/
typedef struct header_t {
size_t size;
struct header_t *ptr;
} header_t;
typedef struct {
void *par;
size_t min_core_size;
header_t base, *loop_head, *core_head; /* base is a zero-sized block always kept in the loop */
} kmem_t;
static void panic(const char *s)
{
fprintf(stderr, "%s\n", s);
abort();
}
void *km_init2(void *km_par, size_t min_core_size)
{
kmem_t *km;
km = (kmem_t*)kcalloc(km_par, 1, sizeof(kmem_t));
km->par = km_par;
km->min_core_size = min_core_size > 0? min_core_size : 0x80000;
return (void*)km;
}
void *km_init(void) { return km_init2(0, 0); }
void km_destroy(void *_km)
{
kmem_t *km = (kmem_t*)_km;
void *km_par;
header_t *p, *q;
if (km == NULL) return;
km_par = km->par;
for (p = km->core_head; p != NULL;) {
q = p->ptr;
kfree(km_par, p);
p = q;
}
kfree(km_par, km);
}
static header_t *morecore(kmem_t *km, size_t nu)
{
header_t *q;
size_t bytes, *p;
nu = (nu + 1 + (km->min_core_size - 1)) / km->min_core_size * km->min_core_size; /* the first +1 for core header */
bytes = nu * sizeof(header_t);
q = (header_t*)kmalloc(km->par, bytes);
if (!q) panic("[morecore] insufficient memory");
q->ptr = km->core_head, q->size = nu, km->core_head = q;
p = (size_t*)(q + 1);
*p = nu - 1; /* the size of the free block; -1 because the first unit is used for the core header */
kfree(km, p + 1); /* initialize the new "core"; NB: the core header is not looped. */
return km->loop_head;
}
void kfree(void *_km, void *ap) /* kfree() also adds a new core to the circular list */
{
header_t *p, *q;
kmem_t *km = (kmem_t*)_km;
if (!ap) return;
if (km == NULL) {
free(ap);
return;
}
p = (header_t*)((size_t*)ap - 1);
p->size = *((size_t*)ap - 1);
/* Find the pointer that points to the block to be freed. The following loop can stop on two conditions:
*
* a) "p>q && p<q->ptr": @------#++++++++#+++++++@------- @---------------#+++++++@-------
* (can also be in | | | -> | |
* two cores) q p q->ptr q q->ptr
*
* @-------- #+++++++++@-------- @-------- @------------------
* | | | -> | |
* q p q->ptr q q->ptr
*
* b) "q>=q->ptr && (p>q || p<q->ptr)": @-------#+++++ @--------#+++++++ @-------#+++++ @----------------
* | | | -> | |
* q->ptr q p q->ptr q
*
* #+++++++@----- #++++++++@------- @------------- #++++++++@-------
* | | | -> | |
* p q->ptr q q->ptr q
*/
for (q = km->loop_head; !(p > q && p < q->ptr); q = q->ptr)
if (q >= q->ptr && (p > q || p < q->ptr)) break;
if (p + p->size == q->ptr) { /* two adjacent blocks, merge p and q->ptr (the 2nd and 4th cases) */
p->size += q->ptr->size;
p->ptr = q->ptr->ptr;
} else if (p + p->size > q->ptr && q->ptr >= p) {
panic("[kfree] The end of the allocated block enters a free block.");
} else p->ptr = q->ptr; /* backup q->ptr */
if (q + q->size == p) { /* two adjacent blocks, merge q and p (the other two cases) */
q->size += p->size;
q->ptr = p->ptr;
km->loop_head = q;
} else if (q + q->size > p && p >= q) {
panic("[kfree] The end of a free block enters the allocated block.");
} else km->loop_head = p, q->ptr = p; /* in two cores, cannot be merged; create a new block in the list */
}
void *kmalloc(void *_km, size_t n_bytes)
{
kmem_t *km = (kmem_t*)_km;
size_t n_units;
header_t *p, *q;
if (n_bytes == 0) return 0;
if (km == NULL) return malloc(n_bytes);
n_units = (n_bytes + sizeof(size_t) + sizeof(header_t) - 1) / sizeof(header_t); /* header+n_bytes requires at least this number of units */
if (!(q = km->loop_head)) /* the first time when kmalloc() is called, intialize it */
q = km->loop_head = km->base.ptr = &km->base;
for (p = q->ptr;; q = p, p = p->ptr) { /* search for a suitable block */
if (p->size >= n_units) { /* p->size if the size of current block. This line means the current block is large enough. */
if (p->size == n_units) q->ptr = p->ptr; /* no need to split the block */
else { /* split the block. NB: memory is allocated at the end of the block! */
p->size -= n_units; /* reduce the size of the free block */
p += p->size; /* p points to the allocated block */
*(size_t*)p = n_units; /* set the size */
}
km->loop_head = q; /* set the end of chain */
return (size_t*)p + 1;
}
if (p == km->loop_head) { /* then ask for more "cores" */
if ((p = morecore(km, n_units)) == 0) return 0;
}
}
}
void *kcalloc(void *_km, size_t count, size_t size)
{
kmem_t *km = (kmem_t*)_km;
void *p;
if (size == 0 || count == 0) return 0;
if (km == NULL) return calloc(count, size);
p = kmalloc(km, count * size);
memset(p, 0, count * size);
return p;
}
void *krealloc(void *_km, void *ap, size_t n_bytes) // TODO: this can be made more efficient in principle
{
kmem_t *km = (kmem_t*)_km;
size_t cap, *p, *q;
if (n_bytes == 0) {
kfree(km, ap); return 0;
}
if (km == NULL) return realloc(ap, n_bytes);
if (ap == NULL) return kmalloc(km, n_bytes);
p = (size_t*)ap - 1;
cap = (*p) * sizeof(header_t) - sizeof(size_t);
if (cap >= n_bytes) return ap; /* TODO: this prevents shrinking */
q = (size_t*)kmalloc(km, n_bytes);
memcpy(q, ap, cap);
kfree(km, ap);
return q;
}
void km_stat(const void *_km, km_stat_t *s)
{
kmem_t *km = (kmem_t*)_km;
header_t *p;
memset(s, 0, sizeof(km_stat_t));
if (km == NULL || km->loop_head == NULL) return;
for (p = km->loop_head;; p = p->ptr) {
s->available += p->size * sizeof(header_t);
if (p->size != 0) ++s->n_blocks; /* &kmem_t::base is always one of the cores. It is zero-sized. */
if (p->ptr > p && p + p->size > p->ptr)
panic("[km_stat] The end of a free block enters another free block.");
if (p->ptr == km->loop_head) break;
}
for (p = km->core_head; p != NULL; p = p->ptr) {
size_t size = p->size * sizeof(header_t);
++s->n_cores;
s->capacity += size;
s->largest = s->largest > size? s->largest : size;
}
}