读get_embedder函数
- 为什么有两个位置编码?
- 第一个位置编码输入3,输出63通道
- 第二个位置编码输入3,输出27通道
- 63+27传入到深度学习模型
embed_fn, input_ch = get_embedder(args.multires, args.i_embed)
if args.use_viewdirs:
embeddirs_fn, input_ch_views = get_embedder(args.multires_views, args.i_embed)
- 输入
- use_viewdirs(default=true) : use full 5D input instead of 3D
- multires(default=10):log2 of max freq for positional encoding (3D location)
- i_embed(default=0):set 0 for default positional encoding, -1 for none
- multires_views(default=4):log2 of max freq for positional encoding (2D direction)
- 输出
- embed_fn:编码函数
- input_ch = 63:编码输出的通道数
- input_ch_views=27: 3+342 = 27
- input_ch分析:
- 对输入的3通道数据,进行multires次torch.sin和torch.cos变化。
- 算一下输出:输入的原值输出3 + 3102 = 63。 10次sin + 次cos。
- sin和cos是x * freq。freq = 2的0-9次方。freq=[1,2,4,...,512];
- embed_fn = [ x[0], x[1], x[2], sin(1 *x[0]), cos(1 *x[0]), sin(1 *x[1]), cos(1 **x[1]), sin(1 **x[2]), cos(1 **x[2]), sin(2 *x[0]), cos(2 *x[0]), sin(2 *x[1]), cos(2 **x[1]), sin(2 **x[2]), cos(2 **x[2]), sin(4 *x[0]), cos(4 *x[0]), sin(4 *x[1]), cos(4 **x[1]), sin(4 **x[2]), cos(4 **x[2]), sin(8 *x[0]), cos(8 *x[0]), sin(8 *x[1]), cos(8 x[1]), sin(8 x[2]), cos(8 x[2]), sin(16 x[0]), cos(16 x[0]), sin(16 x[1]), cos(16 x[1]), sin(16 x[2]), cos(16 x[2]), sin(32 x[0]), cos(32 x[0]), sin(32 x[1]), cos(32 x[1]), sin(32 x[2]), cos(32 x[2]), sin(64 x[0]), cos(64 x[0]), sin(64 x[1]), cos(64 **x[1]), sin(64 **x[2]), cos(64 **x[2]), sin(128x[0]), cos(128x[0]), sin(128x[1]), cos(128x[1]), sin(128x[2]), cos(128x[2]), sin(256x[0]), cos(256x[0]), sin(256x[1]), cos(256x[1]), sin(256x[2]), cos(256x[2]), sin(512x[0]), cos(512x[0]), sin(512x[1]), cos(512x[1]), sin(512x[2]), cos(512x[2])]
def get_embedder(multires, i=0):
if i == -1:
return nn.Identity(), 3
embed_kwargs = {
'include_input' : True,
'input_dims' : 3,
'max_freq_log2' : multires-1,
'num_freqs' : multires,
'log_sampling' : True,
'periodic_fns' : [torch.sin, torch.cos],
}
embedder_obj = Embedder(**embed_kwargs)
embed = lambda x, eo=embedder_obj : eo.embed(x)
return embed, embedder_obj.out_dim
# Positional encoding (section 5.1)
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x : x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
else:
freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)