-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDOO_high_dimension.py
162 lines (130 loc) · 5.65 KB
/
DOO_high_dimension.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from math import *
import numpy as np
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
#from interval import interval, inf, imath
# function need to be optimized
#x = np.linspace(0,1,100) # 100 linearly spaced numbers
#y = (np.sin(13*x)*np.sin(27*x)+1)/2 # computing the values of sin(x
#x1=np.linspace(-5,10,100)
#x2=np.linspace(0,15,100)
#x1=9.42478
#x2=2.475
#print x1
#y=(x2-(5.1/(4*(np.pi)**2))*x1**2+(5/np.pi)*x1-6)**2+10*(1-1/(8*np.pi))*np.cos(x1)+10
#print y
def function(x1,x2):
#y = (np.sin(13*x)*np.sin(27*x)+1)/2.0
y1= (np.sin(13*x1)*np.sin(27*x1)+1)/2.0
y2= (np.sin(13*x2)*np.sin(27*x2)+1)/2.0
y=y1*y2
#y=-((x2-(5.1/(4*(np.pi)**2))*x1**2+(5/np.pi)*x1-6)**2+10*(1-1/(8*np.pi))*np.cos(x1)+10)
return y
#delta=14*2**(-h)
#cen=interval([0,1]).midpoint
#print cen
#test=np.sin(13*cen)
#print test
def split(x1left,x1right,x2left,x2right):
left_mid=x1left+x1right/2.0
right_mid=x2left+x2right/2.0
def midpoint(p1, p2):
mid=(p1+p2)/2.0
return mid
class Node:
def __init__(self, x1center=None, x2center=None, depth=None,x1leftmin=None, x1rightmax=None, x2leftmin=None, x2rightmax=None,parent = None):
self.parentNode = parent
self.childNodes = []
self.x1center=x1center
self.x2center=x2center
self.depth=depth
self.x1leftmin=x1leftmin
self.x1rightmax=x1rightmax
self.x2leftmin=x1leftmin
self.x2rightmax=x2rightmax
def Selectnode(self,node,function_evalution):
#for i in range(len(node)):
#print node[0].center
#print node[0].depth
#print len(node)
#s = sorted(self.childNodes, key = lambda c: c.wins/c.visits + 0.5*sqrt(2*log(self.visits)/c.visits))[-1]
value=[]
for i in range(len(node)):
value.append(function(node[i].x1center,node[i].x2center)+11*2**(-2*node[i].depth))
#print value[i]
#child1=function(node[0].center)+14*2**(-node[0].depth)
#child2=function(node[1].center)+14*2**(-node[1].depth)
index=np.argmax(value)
#print index
#s = sorted(self.childNodes, key = lambda c: c.wins/c.visits + 0.5*sqrt(2*log(self.visits)/c.visits))[-1]
#if child1>child2:
#s=node[0]
#if child1<child2:
#s=node[1]
#if child1==child2:
hi=function(node[index].x1center,node[index].x2center)
#s=random.choice(node[0],node[1])
#print s.depth
#function_evalution.append(node[index].x1center)
print node[index].x1center,node[index].x2center
print hi
#print node[index].depth
return node[index],index
def Addnode(self,x1child_center,x2child_center, depth,x1leftmargin,x1rightmargin,x2leftmargin,x2rightmargin):
n = Node(x1center=x1child_center,x2center=x2child_center, depth=depth, x1leftmin=x1leftmargin,x1rightmax=x1rightmargin, x2leftmin=x2leftmargin,x2rightmax=x2rightmargin,parent = self)
self.childNodes.append(n)
#print n.center
return n
def DOO():
rootnode = Node(depth=0,x1leftmin=0, x1rightmax=1,x2leftmin=0,x2rightmax=1)
current_node=[]
node=rootnode
leaf=[]
final=[]
function_evalution=[]
for i in range(150):
if node.childNodes!=[]:
#select the node
node,index= node.Selectnode(current_node,function_evalution)
current_node.pop(index)
#spliting search space into 2-ary
#calculate the center of the search space
if node.depth%2==0:
mid=midpoint(node.x1leftmin, node.x1rightmax)
#print "vertival:", mid
#x1left=midpoint(node.x1leftmin,mid)
x1left_child_center=midpoint(node.x1leftmin,mid)
x1right_child_center=midpoint(mid, node.x1rightmax)
x2left_child_center=midpoint(node.x2leftmin, node.x2rightmax)
x2right_child_center=x2left_child_center
current_node.append(node.Addnode(x1left_child_center,x2left_child_center, node.depth+1, node.x1leftmin, mid, node.x2leftmin,node.x2rightmax))
current_node.append(node.Addnode(x1right_child_center,x2right_child_center, node.depth+1, mid, node.x1rightmax, node.x2leftmin,node.x2rightmax))
else:
mid=midpoint(node.x2leftmin, node.x2rightmax)
#print "horizaon:",mid
x2left_child_center=midpoint(node.x2leftmin,mid)
x2right_child_center=midpoint(mid, node.x2rightmax)
x1left_child_center=midpoint(node.x1leftmin, node.x1rightmax)
x1right_child_center=x1left_child_center
current_node.append(node.Addnode(x1left_child_center,x2left_child_center, node.depth+1, node.x1leftmin, node.x1rightmax, node.x2leftmin,mid))
current_node.append(node.Addnode(x1right_child_center,x2right_child_center, node.depth+1, node.x1leftmin, node.x1rightmax, mid,node.x2rightmax))
#print mid
#calculate two child center
#left_center=midpoint(node.leftmin,mid)
#right_center=midpoint(mid,node.rightmax)
#print left_child
#print right_child
#print node.depth
#expand two nodes at one time
#current_node.append(node.Addnode(x1left_center,node.depth+1,node.leftmin,mid))
#current_node.append(node.Addnode(right_center,node.depth+1,mid,node.rightmax))
#print current_node[0]
for i in range(len(current_node)):
final.append(function(current_node[i].x1center,node.x2center)+11*2**(-2*current_node[i].depth))
findex=np.argmax(final)
#print function_evalution
return current_node[findex].x1center,current_node[findex].x2center
b,d=DOO()
#print b,d