-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayouts.py
121 lines (116 loc) · 6.72 KB
/
layouts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import dash_core_components as dcc
import dash_bootstrap_components as dbc
import dash_html_components as html
import plotly.express as px
import pandas as pd
import plotly.graph_objs as go
import dash_table
import base64
colors = {"background": "#000000", "text": "#ffffff"}
test_png = './assets/hist_classifiers.png'
test_base64 = base64.b64encode(open(test_png, 'rb').read()).decode('ascii')
def layout():
return html.Div(
[
html.Div([html.Center([html.H1("Analyzing sports commentary to recognize events and extract insights"),
html.Div(html.H5("Yanis Miraoui"),style={"color":"blue"}),
html.Div(html.H5("21-908-504 / ETH Zürich"),style={"color":"blue"}),
html.Div(html.H5("ymiraoui@student.ethz.ch"),style={"color":"blue"}),
])]),
html.Div([dbc.Tabs([dbc.Tab(home_tab(),label="Home")])]
)])
def home_tab():
return html.Div([html.Div([
html.Div([
html.Div(
[dcc.Store(data=[], id="results_data"), dcc.Store(data=[], id="model_stats")]
),
html.Div(
[
html.I("Choose the classification model below:\n"),
dcc.Dropdown(
placeholder="Classification models",
id="model_choices",
multi=False,
)
],className="spaced_div"
),
html.Div(
[
html.Br(),
html.Br(),
html.I("Type your personalized live sports commentary below :\n"),
html.Div([
dcc.Input(
placeholder="Type your live commentary here",
type="text",
value="",
id="perso_commentary",
style={'width': '90%'}
)],),
html.Div(id="output")
],className="spaced_div"
),
html.Div(
[
html.Br(),
html.Br(),
html.Div(html.I("Click this button if you want to use an existing live sports commentary at random :\n")),
html.Div([
dcc.Input(
placeholder="Random commentary will appear here",
type="text",
value="",
id="random_commentary",
style={'width': '90%'}
)],),
html.Div(html.Button('Generate sports commentary', id='submit_val_random', n_clicks=0)),
html.Div(id="output_random")
],className="spaced_div"
),
],
className="pretty_container",
),
html.Div([
html.Div(
[
html.Div([ html.Div(html.H3("Predicted class:"),style={"font-size":"5.0rem"}),
html.Div(html.Center([],id="result_text",style={"font-size":"5.0rem"})),
html.Br(),
html.Div([],id="result_conf",style={"color":"blue", "font-size":"2.0rem"})]),
html.Div(html.Center([html.Audio(id='audio-out', preload='auto', autoPlay=True)]))
],className="spaced_div pretty_container"
),
html.Div(
[
html.Div(html.H4("Confusion matrix: "),style={"font-size":"3.0rem"}),
html.Div(html.Img(id="conf_matrix", height=330), style={'height':'1%', 'width':'1%'}),
],className="spaced_div pretty_container"
)
],
className="four columns",
),
html.Div([
html.Div(
[
html.Div(html.H3("Guidelines: "),style={"font-size":"5.0rem"}),
html.Div(html.H5("1. Choose a model from which the prediction will be computed.")),
html.Div(html.H5("2. Type your own personalized sports commentary or click on the 'Generate' button to generate a real live sports commentary at random.")),
html.Div(html.H3("Results:"), style={"font-size":"5.0rem"}),
html.Div(html.H5(" - The prediction category is computed and displayed.")),
html.Div(html.H5(" - The confidence of the prediction is also displayed below the prediction.")),
html.Div(html.H5(" - An audio of the sports commentary is played out loud, please make sure to turn up your volume.")),
html.Div(html.H5("PLEASE NOTE: the website can sometimes be slow to load the text and the predictions. Please wait a few seconds for the content to load."),style={"color":"red"}),
],className="spaced_div pretty_container"
),
html.Div(
[
html.Div(html.H4("General performance of the models: "),style={"font-size":"3.0rem"}),
html.Div([html.Img(src='data:image/png;base64,{}'.format(test_base64))]),
],className="spaced_div pretty_container"
)
],
className="five columns",
)
],style={"display":"flex"},id="main_frame_div"
)])